Monitoring multicountry macroeconomic risk
- Author:
- Dimitris Korobilis and Maximilian Schröder
- Series:
- Working Paper
- Number:
- 9/2023
Abstract
We propose a multicountry quantile factor augmeneted vector autoregression (QFAVAR) to model heterogeneities both across countries and across characteristics of the distributions of macroeconomic time series. The presence of quantile factors allows for summarizing these two heterogeneities in a parsimonious way. We develop two algorithms for posterior inference that feature varying level of trade-off between estimation precision and computational speed. Using monthly data for the euro area, we establish the good empirical properties of the QFAVAR as a tool for assessing the e ects of global shocks on country-level macroeconomic risks. In particular, QFAVAR short-run tail forecasts are more accurate compared to a FAVAR with symmetric Gaussian errors, as well as univariate quantile autoregressions that ignore comovements among quantiles of macroeconomic variables. We also illustrate how quantile impulse response functions and quantile connectedness measures, resulting from the new model, can be used to implemennt joint risk scenario analysis.
Norges Bank’s Working Papers present research projects and reports that are generally not in their final form. Other analyses by Norges Bank’s economists are also included in the series. The views and conclusions in these documents are those of the authors.
Norges Bank’s Working Papers can also be found in Norges Bank's publication archive, RepEc and BIS Central Bank Research Hub
ISSN 1502-8143 (online)