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Abstract

We propose an easy-to-implement framework for combining quantile forecasts, ap-
plied to forecasting GDP growth. Using quantile regressions, our combination
scheme assigns weights to individual forecasts from different indicators based on
quantile scores. Previous studies suggest distributional variation in forecasting per-
formance of leading indicators: some indicators predict the mean well, while others
excel at predicting the tails. Our approach leverages this by assigning different
combination weights to various quantiles of the predictive distribution. In an em-
pirical application to forecast US GDP growth using common predictors, forecasts
from our quantile combination outperform those from commonly used combination
approaches, especially for the tails.
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1 Introduction

Uncertainty and downside risk play a prominent role in economic forecasting and policy

making. To reflect uncertainty around mean predictions, it has become common practice

for economic forecasters, particularly in central banks, to provide density forecasts. In

recent years, policymakers became particularly interested in quantifying macroeconomic

downside tail risk.1 The most prominent contribution to this aim comes from Adrian et al.

(2019), who introduce the concept of GDP-at-risk as a macroeconomic counterpart to the

financial value-at-risk. Adrian et al. (2019) study the distribution of macroeconomic risk

by estimating a quantile forecast regression of real GDP growth over the next year for

various quantiles and show that financial conditions – captured by the National Financial

Conditions Index (NFCI) – are particularly informative about macroeconomic downside

risk.2

Although it is practical to rely on a single indicator to predict macroeconomic downside

risk, this approach has disadvantages. The complexity of the economy might not be

captured by a single indicator, and neglecting other predictors could pose a risk in itself. A

vast amount of research has shown that a variety of macroeconomic and financial variables

contain predictive information about future economic recessions and downturns, see e.g.

Marcellino (2006) and Liu and Moench (2016) for an overview. Reichlin et al. (2020)

find that financial conditions offer limited additional information on economic downturns

beyond what is already captured by real economic indicators. This finding is further

supported by Amburgey and McCracken (2023a), who document that growth-at-risk is

essentially investment-at-risk.3

To leverage the predictive power of multiple models and predictors, one can turn to

forecast density combination methods. However, these approaches typically assign a single

weight to the entire predictive distribution for each model, not capturing the findings in

Manzan (2015) that some models may be good at forecasting the mean of the distribution

but perform poorly in the tails, or vice versa.

We therefore propose a coherent methodology to construct density forecasts that in-

corporates the heterogeneity in accuracy across regions of the forecast distribution from

multiple sources. The quantile combination approach we propose can achieve more accu-

rate density forecasts by assigning weights to individual forecasts from different indicators

1In the US, the Federal Open Market Committee (FOMC) commonly discusses downside risks to
growth in FOMC statements, with the relative prominence of this discussion fluctuating with the business
cycle. More generally, macroeconomic downside risk has also been the focus of recent publications and
speeches by policy institutions such as the International Monetary Fund (IMF), Bank of Canada and
Bank of England.

2This has led to a surge of interest in growth-at-risk (e.g. Coe and Vahey, 2020; Reichlin et al., 2020;
Carriero et al., 2022; Clark et al., 2023; Brownlees and Souza, 2021; Amburgey and McCracken, 2023b).

3Amburgey and McCracken (2023a) argue that if financial conditions indicate that US real GDP
growth will fall into the lower tail of its conditional distribution, the main contributor is a decline in
investment.
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based on quantile scores.

First, we generate individual forecasts using quantile regression models. Next, we

combine these individual forecasts using a novel quantile combination approach, where

each quantile of the combined density forecast is constructed as a weighted combination of

the individual forecasts for the corresponding quantile. To accommodate the heterogene-

ity in forecast accuracy across different models and parts of the distribution, we allocate

quantile-specific weights from each model using the quantile score introduced by Gneiting

and Ranjan (2011).4 In a final step, after obtaining the combined quantiles of the predic-

tive distribution, we follow Adrian et al. (2019) and fit the skew t-distribution developed

by Azzalini and Capitanio (2003) to recover the full probability density function.

We demonstrate the usefulness of this quantile combination approach by forecasting

the real GDP growth rate for the Unites States for the period 1993Q1-2019Q4 using a

real-time dataset. We combine forecasts from K = 9 quantile regression models. Each

quantile regression model includes lagged GDP growth and one additional predictor (with

lags). Motivated by Adrian et al. (2019) and the extensive literature on predicting eco-

nomic recessions, we include the NFCI, the University of Michigan Consumer Sentiment

Index (ICS), unemployment rate (U), a credit spread (CrSpread) that measures the dif-

ference between BAA corporate bond yield and the 10 year treasury yield, residential

investment (ResInv), new housing permits (Permit), total (PCE) and durable personal

consumption expenditures (PCEDG) and industrial production (INDPRO). The results

reveal a substantial heterogeneity in the predictive performance over the various quantiles

and forecast horizons. None of the individual models perform equally well in forecasting

over all the quantiles and for both forecasting horizons. By providing a flexible way to ac-

count for this heterogeneity, our method leads to density forecast that are more accurate

than forecasts using a single predictor or generated by traditional combination methods.

Our quantile combination approach consistently provides well-calibrated densities and

outperforms other combination approaches. Our findings are robust across various specifi-

cations, and remain robust when extending the evaluation sample to include the COVID-

19 pandemic period, or when estimating models using a rolling window instead of an

expanding window. This suggests that our results are not sensitive to changes in the

sample period or the estimation method, reinforcing the reliability and stability of our

findings.

Moreover, the forecasting performance of our quantile combination approach is robust

to the choice of benchmark vintage for the “true” measure of GDP, something that can

significantly impact empirical results, as highlighted in studies such as Croushore and

Stark (2001) and Stark and Croushore (2002). As data revisions have a greater impact on

the tail of the distribution than on the center, inference on quantiles could be particularly

4The quantile score is a strictly proper scoring rule that represents a weighted version, or decomposi-
tion, of the continuous ranked probability score (CRPS).
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sensitive to the choice of vintage compared to standard point or density forecasts. Indeed,

we show that the best-performing predictor for individual forecasting models varies across

different benchmark vintages. The flexibility of our approach allows weights to adjust

based on forecasting performance for different parts of the distribution, depending on the

specific benchmark vintage selected.

We contribute to the findings of earlier forecast combination and GDP-at-risk litera-

ture in several ways.

First, we show that forecasts from our quantile combination approach outperform

forecasts from commonly used combination approaches, including Bayesian Model Av-

eraging (BMA), optimal combination of density forecasts (OptComb) as suggested by

Hall and Mitchell (2007) and Geweke and Amisano (2011), and equal weights (EQ). This

holds irrespective of using the CRPS or a quantile-weighted version of the CRPS that

emphasizes performance in the center, left, or right tail of the distribution as a measure

of forecast accuracy. Importantly, the relative gains in forecasting performance from our

model are not specific to particular regions of the distribution or limited to specific sub-

periods within our forecasting sample. Instead, we find a steady improvement over time

across all quantiles of the GDP distribution.

Second, we complement the findings from Adrian et al. (2019) by showing that besides

the NFCI, other variables are also informative about future downside macroeconomic risk.

Specifically, we find that incorporating variables such as residential investments, building

permits and a consumer sentiment index leads to more accurate forecasts for the lower

quantiles of the GDP distribution compared to quantile regressions that include only the

NFCI.

Finally, our paper is also related to Opschoor et al. (2017), who assess the merits of

density forecast combination schemes that assign weights to individual density forecasts

based on the censored likelihood scoring rule of Diks et al. (2011) and the CRPS of

Gneiting and Ranjan (2011). They apply this approach to measure downside risk in

equity markets using individual volatility models. Besides focusing on GDP growth rather

than on equity markets, our paper differs from theirs in two important aspects: we assign

weights to individual forecasts based on quantile scores, and we do not solely focus on the

lower tail of the distribution but aim to obtain density forecasts that are more accurate

for all parts of the distribution.

The rest of the paper is organized as follows: Section 2 presents our quantile combina-

tion approach and the individual quantile regression models. Section 3 presents the data

set we use and results from our empirical application. Section 4 concludes.
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2 Econometric framework

In this section we describe our quantile forecast combination approach. Our combination

approach aims to obtain overall more accurate density forecasts, by assigning a set of

combination weights to the various quantiles of the individual forecasts. To achieve this

goal, we first produce individual forecasts using quantile regression models, outlined in

section (2.1). Then we combine the various individual forecasts using a novel quantile

combination approach, where each quantile of the combined density forecast is constructed

as a weighted combination of the individual forecasts for the corresponding quantile,

detailed in section (2.2). Then, we build the predictive distributions fitting a skew t-

distribution to our combined quantiles, discussed in (2.3). Finally we describe alternative

combination approaches used in the literature, to which we will ultimately compare the

out-of-sample performance of our proposed quantile combination approach.

2.1 Quantile regression models

Quantile regression, popularized in economics by Koenker and Bassett Jr (1978), gener-

alizes the traditional least squares regression by fitting a distinct regression line for each

quantile of the distribution of the variable of interest. In principle, we would like to know

the entire conditional distribution function that relates the dependent variable with the

predictors. Quantile regression approximates this by minimizing sums of asymmetrically

weighted absolute residuals.

In this paper we forecast GDP growth with an autoregressive distributed lag (ARDL)

model:

yt+h,q,k = x′
t,kβq + εt+h (1)

where x′
t,k is the vector of lagged values of yt, for t = 1, . . . , T (with maximum lag r) and

of one of the k = 1, . . . , K predictors (with maximum lag p). In our empirical application,

the number of lags p and r are selected using the BIC selection criterion with a maximum

of four lags. Traditionally, quantile regression estimation for βq proceeds by minimizing

the quantile weighted absolute value of errors:

β̂q = min
βq

T−h∑
t=1

(
q · Iyt+h≥xtβ|yt+h − x′

t,kβq|+(1− q)Iyt+h<xtβ|yt+h − x′
t,kβq|

)
(2)

and I(·) denotes the usual indicator function.5 The set of quantiles provides a more

complete description of the response distribution than the mean, making the quantile

regression an important alternative to classical mean regression. Moreover, q = 1, . . . , 17

denotes the respective quantile, set to 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65,

5To avoid quantile-crossing, we monotonically rearrange the quantile forecasts ŷt+h,q,k following Cher-
nozhukov et al. (2010).
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70, 75, 80, 85, 90 percentiles in our empirical application. We decide to ignore more

“extreme” quantiles (below 10 and above 90) for two reasons: first, it is well known that

estimation error increases for very rare events; second, this estimation error will impact

the combination technique we propose since it is based on the accuracy at these quantiles

(corresponding to one or two events in the time series). We will focus on forecast horizons

h = {1, 4} in our empirical application.

In the rest of the paper, we will denote ŷt+h,q,k as the quantile forecasts, f(y)t+h,q,k

as its predictive probability density function (pdf) and its cumulative counterpart as

F (y)t+h,q,k.

2.2 Quantile Forecasts Combination

Combining density forecasts has recently become a well-known practice for macroeconomic

forecasting, see Aastveit et al. (2019) for a recent survey of the literature. The most com-

mon approach for combining predictive densities is to use weighted linear combinations

of prediction models, evaluated using a type of scoring rule (e.g. Hall and Mitchell, 2007;

Amisano and Giacomini, 2007; Jore et al., 2010; Hoogerheide et al., 2010; Kascha and

Ravazzolo, 2010; Geweke and Amisano, 2011, 2012; Gneiting and Ranjan, 2013; Aastveit

et al., 2014; Kapetanios et al., 2015; Ganics, 2017; Ganics et al., 2023). However, recent

advances also include more complex combination approaches that allow for time-varying

weights with possibly both learning and model set incompleteness (e.g. Billio et al., 2013;

Casarin et al., 2015; Pettenuzzo and Ravazzolo, 2016; Del Negro et al., 2016; Aastveit

et al., 2018; McAlinn and West, 2019; McAlinn et al., 2020; Aastveit et al., 2023).

Common to all the aforementioned approaches is that a single weight is attached to the

entire predictive distribution for each model, assuming the predictive ability is constant

across the various regions of the distribution. In the framework of quantile regression,

applying the aforementioned approaches requires to (i) estimate the quantile regression,

(ii) fit a distribution (skew t-distribution in Adrian et al., 2019) to obtain a smooth density

forecast, and (iii) combine the K densities. In this paper we propose to directly combine

the quantile forecasts obtained in step (i) and then fit a distribution to the resulting

combined quantiles.

Suppose that a set of k = 1, . . . , K quantile forecasts distributions ŷt+h,q,k for the same

variable of interest yt at horizon h are available. Standard density combination methods

apply a unique combination weight to the entire predictive distribution, i.e.:

yct+h
1×Q

= wk
1×K

ŷt+h,q,k
K×Q

(3)

where yct+h denotes the resulting combined forecast for y, and q = 1, . . . , Q indicates

the quantiles (or bins) of the predictive distribution. However, this procedure implicitly

6



overlooks superior forecast accuracy of some forecasts k over a specific region q of the

distribution. Suppose indeed that a subset of this set is more accurate in predicting the

mean (tails) of the distribution, while they perform poorly in the tails (mean). It would

then be desirable to consider this heterogeneity when constructing the combined density

i.e.:

yct+h
1×Q

= diag

(
wq,k
Q×K

ŷt+h,q,k
K×Q

)
(4)

Since here weights are quantile-specific, forecasts are now multiplied by a vector of com-

bination weights instead of a scalar as in equation (3).

2.2.1 Evaluation of quantiles’ forecast accuracy: the quantile scores

From our quantile ARDL regression (equation (1)) we obtainK (equal to 9 in our empirical

application) forecasts for yt+h, distributed over Q (set to 17 in our empirical application)

quantiles. The purpose of this paper is to combine them taking into consideration the

forecast accuracy at the quantile level. In order to do so, we need an evaluation method

that helps us to discriminate not only the accuracy of the kth forecast but also its accuracy

at the qth quantile. A common scoring rule for evaluating density forecasts is the Contin-

uous Ranked Probability Score (CRPS). According to this score, the density forecast is

evaluated by computing the distance at each point of the distribution to the realization.

It is defined by:

CRPS = −
∫ ∞

−∞
(F (y)t+h,q,k − I(F (y)t+h,q,k ≥ yt+h))

2dy (5)

where F (y)t+h,q,k represents the CDF of forecast f(y)t+h,q,k and yt+h the corresponding

realization. The CRPS corresponds to the integral of the Brier scores for the probability

forecasts at all real-valued thresholds (Matheson and Winkler, 1976; Hersbach, 2000;

Gneiting and Raftery, 2007). While this score is the average “error” across the domain of

the distribution, we follow Gneiting and Ranjan (2011) who propose the following quantile

decomposition of the CRPS:

CRPS =

∫ 1

0

QSt+h,k(q)dq, (6)

where QSt+h,k(q) is labeled the quantile score and defined as:

QSt+h,k(q) =
1

n− h+ 1

m+n−h∑
t=m

QSq(F
−1(y)t+h,q,k, yt+h), and

QSq(F
−1(y)t+h,q,k, yt+h) = 2

(
I{yt+h ≤ F−1(y)t+h,q,k} − q

)
(F−1(y)t+h,q,k − yt+h)

(7)

7



where m and n are defined by the in-sample and out-of-sample periods, F−1(y)t+h,q,k is

the value the inverse of the CDF of f(y)t+h,q,k taken at quantile q.

We would like to highlight a couple of properties of function QSq in equation (7).

First, notice that the closer q is to zero, the lower are the probabilities that ŷt+h,q,k will

have a value lower than yt+h; at the same time, the closer q is to one, the lower are the

probabilities that ŷt+h,q,k will have a value greater than yt+h (Laio and Tamea, 2007). The

quantile score based on equation (7) therefore has a concave shape. Second, since QSq is a

measure of loss accuracy, the forecast that obtains the lowest QSq curve is preferred to the

other alternatives. Finally, as proven by Friederichs and Hense (2008) the CRPS-quantile

decomposition QS(q) is a proper scoring rule and Gneiting and Raftery (2007) also show

that it encompasses the asymmetric loss score proposed by Giacomini and Komunjer

(2005).

2.2.2 Quantile-specific combination weights

We propose to use the quantile scores to construct quantile-specific combination weights:

wt+h,q,k
K×Q

=

∑m+n−h
t=m 1/QSt,k(q)∑K

k=1

∑m+n−h
t=m 1/QSt,k(q)

(8)

where t = m, . . . ,m + n − h denotes the forecast origins. wt+h,q,k is the matrix K × Q

of combination weights for forecast k. The recursive weights are then a function of past

performance of each model k known at the time the forecast is made (t). We need to

impose that wt+h,q,k ≥ 0 and that:

K∑
k=1

wt+h,q,k = 1

The combined quantile forecast yct+h is obtained by multiplying the matrix of combi-

nation weights computed according to equation (8) with the matrix of quantile forecasts:

yct+h = diag(wt+h,q,k × ŷt+h,q,k) (9)

The diagonal of this matrix corresponds to the match between the vector of weights for

k model and the corresponding forecast from model k.

2.3 Predictive distributions

From the previous sections, we obtained the combined quantiles of the predictive distribu-

tion. In order to recover the full probability density function we fit the skew t-distribution
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developed by Azzalini and Capitanio (2003), following Adrian et al. (2019):

f(y|µ, σ, α, ν) = 2

σ
t

(
y − µ

σ
|ν
)
T

(
α
y − µ

σ

√
ν + 1

ν + y−µ
σ

|ν + 1

)
(10)

where f and F (·) respectively denote the PDF and CDF of the Student t-distribution. The

four parameters of the distribution are the location µ, scale σ, fatness ν, and shape α. For

each quarter, we choose the four parameters {µt, σt, αt, νt} of the skewed t-distribution f

to minimize the square distance between our estimated quantile function and the quantile

function of the skew t-distribution F−1(q|µ, σ, α, ν) from (10) to match the 10, 25, 75 and

90 percent quantiles:

{µ̂t+h, σ̂t+h, α̂t+h, ν̂t+h} = argmin
µ,σ,α,ν

∑
q

(
x′
tβq − F−1(q, µ, σ, α, ν)

)2

(11)

where µ̂t+h ∈ R, σ̂t+h ∈ R+, α̂t+h ∈ R, and ν̂t+h ∈ Z+.

We follow Mitchell et al. (2024), who suggest to fit a distribution at the last stage

of forecasting, to reduce the impact of such approximation on the forecast accuracy.

In contrast to alternative combination approaches, we therefore evaluate and combine

quantile forecasts first, and only once they are combined we approximate the predictive

distribution from the quantiles.6

2.4 Comparison with alternative combination approaches

In the empirical application, we will compare the predictive distribution from our quantile

combination approach with the predictive distributions obtained from three alternative

combination approaches.

2.4.1 Equal Weights

The first alternative combination approach is to allocate an equal combination weight,

wk = 1/K, to each of the predictive distributions from the K individual models. The

combined predictive distribution is then the following:

f(yt+h) =
K∑
k=1

wkf(y)t+h,k (12)

6We have also explored constructing predictive densities from quantile forecasts using the non-
parametric approach of Mitchell et al. (2024). The advantage of this approach is that it can flexibly
accommodate various distributional shapes. A comparison between our combination approach and al-
ternative linear combinations fitted on non-parametric distribution is briefly discussed in section 3.4 and
detailed results are reported in Appendix A.3.
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Combination weights wk = 1/K assure that the combined distribution is still a distribu-

tion since 0 ≤ wk ≤ 1 and
∑K

k=1wk = 1.

2.4.2 Optimal Weights

The second combination approach is the so called “Optimal Weights” proposed by Hall

and Mitchell (2007) and Geweke and Amisano (2011). Here, combination weights are

obtained by maximizing a logarithmic score function:

wk =
1

T − h

T−h∑
t=1

ln(f(y)t+1,k) s.t. wk > 0,
K∑
k=1

wk = 1 (13)

which is known as the log predictive score. Given the size of K, the inference algorithm

for wk in Conflitti et al. (2015) is used. See also Hall and Mitchell (2007), Jore et al.

(2010), and Geweke and Amisano (2010) for a discussion on the use of the log score as a

ranking device for the forecast ability of different models.

2.4.3 Bayesian Model Averaging

The third combination approach is Bayesian Model Averaging (BMA, henceforth). Here,

the individual predictive densities are combined into a composite-weighted predictive dis-

tribution f(yt+h|IK), given by

f(yt+h|IK) =
K∑
k=1

F (Mk) f(yt+h|k) (14)

where F (Mk) is the posterior probability of model k, based on the predictive likelihood

for model k. Mitchell and Hall (2005) discuss the analogy of the log score in a frequentist

framework to the log predictive likelihood in a Bayesian framework, and how it relates to

the Kullback-Leibler divergence. See Hoeting et al. (1999) for a review on BMA.

2.5 Forecast evaluation

We measure the relative forecast accuracy using the CRPS and evaluate their calibra-

tion using Probability Integral Transforms (PITs) tests. In particular, we compare the

forecasting performance of the various individual models and alternative combination ap-

proaches with versions of the CRPS that penalize the loss in accuracy at certain regions

of the target distribution proposed by Gneiting and Ranjan (2011).

emphCRPSt+h,k

∫ 1

0

QSq(F
−1
t+h,k(q), yt+h)ν(q)dq (15)

10



where ν is a non-negative weight function on the unit interval. For a constant weight

function, equation (15) reduces to the unweighted score (see equation (6)), reported as

“uniform” in Table 1 in section 3.2. However, we are also considering scores that put an

extra emphasis on specific regions of the distributions, such as the “centre” ν(q) = q(1−q),

the “left tail”, ν(q) = (1 − q)2, the “right tail”, ν(q) = (2q − 1)2, both “tails”, ν(q) =

(2q−1)2 and an additional emphasis on both tails, labeled “heavy tails”, ν(q) = (2q−1)4.

We also assess the overall fit of a forecast density by testing goodness-of-fit relative

to the “true,” but unobserved density using the PITs, i.e., the CDF of the forecast eval-

uated at the subsequent realization of GDP growth, see Diebold et al. (1998). The PITs

summarize the properties of the densities and may help us judge whether the densities are

biased in a particular direction and whether the width of the densities have been roughly

correct on average. For correctly calibrated forecast densities, the PITs, at a minimum,

should be uniformly distributed. We test for correct calibration by applying theRossi and

Sekhposyan (2019) test and the four-raw-moment test by Knüppel (2015).

We would like to highlight that, since our main goal is to combine forecasts at the

quantile level to obtain more accurate overall density forecasts, we use CRPS and PITs

as our main measure of forecast accuracy and calibration, respectively. In case one is only

interested in a specific part of the distribution, e.g. picking the forecast with the most

accurate left tail, it would be more desirable to use the quantile score for that particular

quantile as a measure of forecast accuracy. The emphasized CRPS, however, could be

viewed as a middle point between these two measures: it evaluates the overall density

forecast but also accounts for the researcher’s cost function by penalizing more heavily

the loss in a specific part of the distribution.

3 Empirical Application

In this section, we analyze the performance of our quantile combination approach for

forecasting US real GDP growth using real time data. The main goal of the exercise is

to examine the forecasting performance of our quantile combination approach, compare

it to commonly used alternative combination approaches and analyze what are the most

informative predictors for the various parts of the predictive distribution of GDP growth.

3.1 Data

A vast amount of research has shown that a variety of economic and financial variables

contain predictive information about future economic recessions and downturns. In our

application we will consider in total K = 9 different predictors.7 These are leading

7In principle, we could have selected a larger number of forecasts to combine (i.e., a large K), as our
quantile combination approach does not have explicit limitations in terms of scalability. However, we
choose to use a relatively small number of models in our empirical exercise to facilitate the interpretation
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indicators that cover a broad range of the macroeconomy and that earlier studies have

found to be particularly useful for predicting GDP growth and recessions.

We include real-time vintages of the following variables: the National Financial Condi-

tion Index (NFCI)8, the University of Michigan Consumer Sentiment Index (ICS), unem-

ployment rate (U), a credit spread (CrSpread) that measures the difference between BAA

corporate bond yield and the 10 year treasury yield, residential investment (ResInv), new

housing permits (Permit), total (PCE) and durable personal consumption expenditures

(PCEDG) and industrial production (INDPRO). We provide detailed information about

the various series, including data source and data transformation, in Table (A.1) in the

appendix. Our baseline data sample covers the period 1973Q1-2019Q4 and we take into

account data revisions using real-time data (see Table A.1 for details).

3.2 Out-of-sample density forecasts for US GDP growth

Our data sample covers the period 1973Q1-2019Q4. The initial forecasts are estimated

on the data period 1973Q1-1995Q2 (in-sample period of 89 data observations). The full

recursive out-of-sample forecast evaluation period runs from 1995Q3-2019Q4 (97 obser-

vations). We report forecasts for two horizons: one quarter ahead (H = 1) and one year

ahead (H = 4). These forecasts are based on models that are estimated on an expanding

window.9 Our models are all quarterly ARDL models, and we employ quarterly real-time

data vintages that reflect the information available shortly after the release of national

accounts data, typically between three to four weeks into the first month of a quarter.

Our primary aim in this empirical application is to demonstrate the effectiveness of our

quantile combination approach. This involves constructing density forecasts that incorpo-

rate the heterogeneity in accuracy across regions of the forecast distribution from multiple

models. We do not specifically consider the fact that some of our predictors are avail-

able at frequencies higher than quarterly intervals. However, our quantile combination

framework can easily be adapted to allow for nowcasting scenarios, incorporating models

that account for the flow of data releases and the mixed-frequency nature of predictors.

Finally, we follow Romer and Romer (2000) and Clark (2011) among many others, and

use the second available estimate of GDP as the actual measure.10

We compare the forecasting performance of our quantile combination approach with

of results, particularly for the model-specific weights.
8Note that most earlier studies only use the current vintage of NFCI in a pseudo out-of-sample

framework to form predictions of GDP growth. One exception is Amburgey and McCracken (2023b),
who construct real-time vintages of the NFCI. They find additional gains in the predictive content of
NFCI for quantiles of GDP growth, particularly leading up to recessions. In our empirical application,
we use the real-time vintages constructed by Amburgey and McCracken (2023b).

9Results based on estimates using a rolling window of 89 quarters are shown in Appendix A.2 and, as
discussed in section 3.4, are very close to the ones reported in Table 1 below.

10Our results are robust to the use of alternative benchmark measures as discussed and shown in section
3.3 and shown in Appendix A.5.
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commonly used alternative combination approaches. Table 1 compares density forecasting

accuracy from our quantile combination approach (labeled Q-comb) with equal weighting

combination of linear forecasts (EQ), optimal weighting combination of linear forecasts

(OPT) and Bayesian model averaging (BMA). We report relative density forecasting

accuracy, measured by standard CRPS (labeled as “Uniform” in Table 1) and various

CRPS versions that penalize loss accuracy at specific regions of the target distribution as

defined in equation (15). The table reports averages over the evaluation periods.

Table 1: Average CRPS values with emphasis on specific regions of the distribution

one-quarter-ahead forecasts

Emphasis ν(q) EQ OPT BMA Q-comb
Uniform ν(q) = 1 0.408*** 0.623*** 0.681*** 0.278
Centre ν(q) = q(1− q) 0.450*** 0.684*** 0.750*** 0.054
Tails ν(q) = (2q − 1)2 0.308*** 0.481*** 0.525*** 0.062
Right Tail ν(q) = (2q − 1)2 0.273*** 0.778** 0.622*** 0.084
Left Tail ν(q) = (2q − 1)2 0.647*** 0.480*** 0.672*** 0.086
Heavy Tails ν(q) = (2q − 1)4 0.264*** 0.418*** 0.452*** 0.028

one-year-ahead forecasts

Emphasis ν(q) EQ OPT BMA Q-comb
Uniform ν(q) = q(1− q) 0.523*** 0.853*** 0.898** 0.359
Centre ν(q) = q(1− q) 0.545*** 0.892*** 0.930 0.066
Tails ν(q) = (2q − 1)2 0.460*** 0.756*** 0.795*** 0.093
Right Tail ν(q) = (2q − 1)2 0.358*** 0.874** 0.847** 0.111
Left Tail ν(q) = (2q − 1)2 0.852 0.793*** 0.906*** 0.115
Heavy Tails ν(q) = (2q − 1)4 0.434*** 0.708*** 0.754*** 0.046

Note: The table reports average CRPS values with emphasis on specific regions of the
distribution (see Eq. (15), for various forecast combination approaches. The alternative
combination models EQ, OPT, BMA combines linear models, while Q-comb combines
quantile models. For the alternative models, we report the relative performance com-
pared to Q-comb. Thus, values > 1 denotes higher forecast accuracy than our quantile
combination. Stars indicate significance levels for Diebold-Mariano test of Q-comb versus
alternative approaches combinations.

The table reveals that our quantile combination approach outperforms the other al-

ternative combination approaches for both forecasting horizons. This holds irrespective

of using the CRPS or any quantile weighted version of the CRPS that emphasizes per-

formance in either the centre, left or right tail of the distribution as forecast accuracy

measure. This indicates that the relative gains in terms of forecasting performance from

our combination approach are not specific to observations in a certain region of the dis-
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tribution. Stars in the table represent the significance level of a Diebold-Mariano test for

superior forecast ability of quantile combination versus the alternative linear combination

approaches.

To address whether our improved out-of-sample forecast performance is limited to a

specific time period or driven by some outliers, we report in Figure 1 the cumulative

CRPS of the alternative combination approaches relative to our quantile combination.

The measures are constructed so that a decrease in the relative value measures a relative

improvement in the forecasting performance of our quantile combination compared to

the alternative linear combination approach. While the various individual models show

considerable instabilities in predictive performance over time, the performance from our

quantile combination approach is far more robust, yielding a steady improvement over

the various alternative combination approaches over the different time periods.

Figure 1: Cumulative CRPS of alternative combination approaches relative to the quantile
combination for one-quarter and one-year ahead forecasts.
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To better understand the superior predictive ability of our combination, we can inspect

the combination weights’ dynamics. Table 2 reports the combination weights at the end

of the out-of-sample evaluation period, while Figures 2 and 3 show their evolution over

time throughout the the out-of-sample evaluation period.

The results show that the combination weights vary, depending on the specific quan-

tiles, time-period and forecasting horizon. NFCI and housing permits have a relatively

high predictive power (reflected by a high weight) for the left tail and the center at the one

quarter ahead forecasting horizon. However, predictive power for the one year ahead hori-

zon and the right tail is low. Quite surprisingly, the credit spread, often used to forecast

(financial) crises, is actually more informative for predicting the right tail. Residential

investments has a relatively high predictive power for both the left and the (center) right

tail at the one quarter ahead horizon, but is not so pronounced for the one year ahead

horizon. Personal consumption expenditures (PCE and PCEDG), on the other had, do

14



not receive much weight for the short horizon forecasts, but are more important for fore-

casting one-year-ahead GDP. Moreover, Figures 2 and 3 show that there are periodically

large fluctuations in the weights over time for all quantiles at both forecasting horizons.

Table 2: Combination weights at the end of evaluation sample

one-quarter-ahead forecasts

Q NFCI ICS U CrSpread ResInv PCE PERMIT PCEDG INDPRO
0.10 0.1897 0.0864 0.0724 0.0757 0.1833 0.1246 0.0790 0.1006 0.0883
0.25 0.0822 0.1255 0.1051 0.0441 0.0681 0.0566 0.3147 0.0851 0.1185
0.50 0.2290 0.0699 0.0492 0.0718 0.1049 0.0529 0.2776 0.0598 0.0849
0.75 0.0433 0.0216 0.0288 0.2659 0.5152 0.0433 0.0299 0.0342 0.0177
0.90 0.1536 0.1527 0.0880 0.1204 0.1439 0.1185 0.0675 0.0832 0.0722

one-year-ahead forecasts
Q NFCI ICS U CrSpread ResInv PCE PERMIT PCEDG INDPRO

0.10 0.1058 0.1125 0.1070 0.0750 0.0969 0.1413 0.1226 0.1410 0.0980
0.25 0.0802 0.0740 0.1159 0.1005 0.1889 0.1221 0.1695 0.0704 0.0785
0.50 0.0706 0.0880 0.1267 0.1481 0.0547 0.0821 0.0689 0.2587 0.1023
0.75 0.1623 0.0769 0.1112 0.1688 0.0912 0.1541 0.0964 0.0921 0.0470
0.90 0.0707 0.0720 0.0517 0.1042 0.0710 0.3702 0.0595 0.1390 0.0617

Note: The table shows the combination weight for each individual model for a specific
quantile at the end of the out-of-sample evaluation period.

Our results support earlier findings that variables such as the NFCI (Adrian et al.,

2019) and residential investments (Aastveit et al., 2019) are good predictors for the lower

left tail of the GDP growth distribution. Interestingly, however, the results also show that

there is scope for improving these forecasts by also adding information from additional

predictors. In fact, models that include either the NFCI or residential investments do not

consistently achieve the highest weights in our quantile combination. Note also that there

seem to be clear gains from adding information from models using various predictors.

Although there are some variables that clearly outperform other variables for specific

quantiles and horizons, the weights do not seem to converge to either zero or one for any

of the variables.

The results reveal a substantial heterogeneity in the predictive performance over the

various quantiles and forecast horizons. None of the individual models perform equally

well in forecasting over all the quantiles and for both forecasting horizons. The quantile

combination approach proposed in this paper is a flexible way to account for the het-

erogeneity in accuracy over the predictive distribution of GDP growth and thereby lead

to density forecast that are more accurate than forecasts from traditional combination

methods.
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Figure 2: Quantile combination weights over time for one-quarter-ahead forecasts for all
K = 9 forecasting models.
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Figure 3: Quantile combination weights over time for one-year-ahead forecasts for all
K = 9 forecasting models.
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Finally, we assess whether the density forecasts from our quantile combination ap-

proach are well calibrated (or “probabilistically calibrated” as in the definition of Gneit-

ing and Raftery, 2007). In Figure 4, we plot the empirical CDF of the PITs. Correctly

calibrated forecasts would be displayed as an empirical CDF on the 45 degree line. The

graph also shows 5% critical values calculated using bootstrapping techniques as in Rossi

and Sekhposyan (2019). For completeness, the test statistics and corresponding critical

values for the Kolmogorov-Smirnov and Cramer-von Mises (Rossi and Sekhposyan, 2019)

and Knüppel (Knüppel, 2015) tests (using four moments) are reported in Table 3. The

different tests all show that the density forecasts are well calibrated: according to the

Kolmogorov-Smirnov and Cramer-von Mises tests, we fail to reject the null hypothesis of

correct calibration at any usual significance level for both horizons. The Knüppel test

confirms this.

Figure 4: Calibration of quantile-combined density forecast. Empirical CDF for PITs
with the empirical 5% critical values calculated using Bootstrap following Rossi and Sekh-
posyan (2019).
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Table 3: Calibration tests statistics

one-quarter-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 1.094 1.479 1.688 1.923
Cramér–von Mises 0.293 0.525 0.620 1.006

p-values
Knüppel NW 0.983

one-year-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 1.134 1.440 1.589 1.825
Cramér–von Mises 0.327 0.620 0.724 1.011

p-values
Knüppel NW 0.708

Note: The null hypothesis of calibration is rejected for Kolmogorov–Smirnov and
Cramér–von Mises if the test statistic is greater than the bootstrapped critical values
following Rossi and Sekhposyan (2019); for Knüppel (2015) test rejects null hypothesis of
calibration if the p-value displayed here is lower than significance level.

3.3 Alternative benchmark vintage

The choice of benchmark vintage for the “actual” measure of GDP is a key issue in any

application using real-time vintage data (Croushore and Stark, 2001; Croushore, 2006).

Stark and Croushore (2002) discuss various alternative benchmark data vintages and show

that empirical results may depend on this choice. In our application, we follow Romer and

Romer (2000) and Clark (2011), among many others, and use the second available estimate

of GDP as the actual measure. However, in this section, we also consider two alternative

benchmark vintages: the first release of GDP growth and the latest available vintage of

GDP growth (the 2023Q3 release). In Figure 5, we plot the empirical distribution of the

various GDP data vintages. The figure shows considerable differences between different

GDP vintages, both in terms of the mean and the median. The differences are even more

pronounced in the tails of the distributions. One may therefore expect that inference

on quantile-specific forecasting performance may be even more sensitive to the choice of

benchmark vintage than standard point or density forecasts.
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Figure 5: Empirical distribution of GDP growth rate calculated from first, second and
latest releases. Data until 2019Q4.
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We study the implications for forecasting performance of our quantile combination

approach when evaluating the forecasts against different vintages of GDP growth releases.

Table 4 reports results for the comparison between our quantile combination approach

and alternative combination approaches when evaluating the forecasts against the first

release of GDP and the latest available release of GDP . As can be seen from the table, our

quantile combination approach outperforms the other alternative combination approaches

at both forecasting horizons, irrespective of using the CRPS or any quantile-weighted

version of the CRPS that emphasizes performance in either the center, left, or right tail

of the distribution as a forecast accuracy measure. In fact, the results are very similar

to the baseline results in Table 1 and show that the superior performance of our quantile

combination approach is robust to alternative benchmark vintages.11

In Tables 5 and 6, we report the combination weights at the end of the evaluation

sample when using the first and the final vintage as the benchmark vintage, respectively.

Interestingly, though, the model weights differ for the different vintages, compared to the

weights in our baseline specification (Table 2). Based on the quantile-specific weights,

the best-performing model for the various quantiles tends to differ in most cases. For

instance, focusing on the one quarter ahead forecasts for the lower-left quantile, the con-

sumer confidence survey model obtains the highest weight when using the latest vintage

11In appendix section A.5 we provide more detailed results, showing that the qunatile combination
provide well-calibrated densities and yield a steady improvement over the various alternative combination
approaches over time fore each of the alternative benchmark vintages.
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Table 4: Average CRPS values with emphasis on specific regions of the distribution. First
release of GDP and latest available release of GDP.

one-quarter-ahead forecasts

first release latest release
Emphasis ν(q) EQ OPT BMA Q-comb EQ OPT BMA Q-comb
Uniform ν(q) = 1 0.420*** 0.607*** 0.676*** 0.269 0.450*** 0.678*** 0.774*** 0.322
Centre ν(q) = q(1− q) 0.469*** 0.671*** 0.746*** 0.053 0.500*** 0.750*** 0.851*** 0.063
Tails ν(q) = (2q − 1)2 0.314*** 0.461*** 0.513*** 0.059 0.343*** 0.522*** 0.595*** 0.072
Right Tail ν(q) = (2q − 1)2 0.288*** 0.800* 0.651*** 0.084 0.289*** 0.786 0.724*** 0.092
Left Tail ν(q) = (2q − 1)2 0.650*** 0.444*** 0.6300*** 0.080 0.724*** 0.556*** 0.745*** 0.105
Heavy Tails ν(q) = (2q − 1)4 0.273*** 0.403*** 0.450*** 0.027 0.288*** 0.444*** 0.508*** 0.032

one-year-ahead forecasts

first release latest release
Emphasis ν(q) EQ OPT BMA Q-comb EQ OPT BMA Q-comb
Uniform ν(q) = 1 0.525*** 0.841*** 0.883** 0.338 0.569*** 0.866*** 0.892*** 0.406
Centre ν(q) = q(1− q) 0.553*** 0.887*** 0.926* 0.063 0.595*** 0.904*** 0.938* 0.075
Tails ν(q) = (2q − 1)2 0.458*** 0.737*** 0.777*** 0.087 0.51*** 0.781*** 0.805*** 0.107
Right Tail ν(q) = (2q − 1)2 0.354*** 0.881* 0.839** 0.104 0.391*** 0.879** 0.844*** 0.124
Left Tail ν(q) = (2q − 1)2 0.886 0.768*** 0.879*** 0.109 0.910 0.810*** 0.898*** 0.132
Heavy Tails ν(q) = (2q − 1)4 0.430*** 0.694*** 0.729*** 0.043 0.477*** 0.736*** 0.757*** 0.053

Note: The table reports average CRPS values with emphasis on specific regions of the
distribution (see Eq. (15), for various forecast combination approaches. The alternative
combination models EQ, OPT, BMA combines linear models, while Q-comb combines
quantile models. For the alternative models, we report the relative performance com-
pared to Q-comb. Thus, values > 1 denotes higher forecast accuracy than our quantile
combination. Stars indicate significance levels for Diebold-Mariano test of Q-Comb versus
alternative approaches combinations.

as the benchmark. This contrasts with our baseline results where NFCI was the most

important predictor for the lower tail when using the second release of GDP as a bench-

mark. This example shows that inference based on forecasting performance from one

specific part of the predictive distribution can be very sensitive to the specific choice of

benchmark vintage. However, when measuring overall forecasting performance, our quan-

tile combination approach seems robust to this, as it is flexible enough to adjust weights

according to forecasting performance for different parts of the distribution depending on

the specific choice of benchmark vintage.
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Table 5: Combination weights at the end of evaluation sample - first release of GDP.

one-quarter-ahead forecasts

Q NFCI ICS U CrSpread ResInv PCE PERMIT PCEDG INDPRO
0.10 0.1643 0.1225 0.0624 0.0808 0.1470 0.1093 0.1295 0.0897 0.0944
0.25 0.1118 0.1310 0.0860 0.0909 0.1318 0.1246 0.0891 0.0705 0.1643
0.50 0.3561 0.1316 0.2198 0.0440 0.0784 0.0575 0.0298 0.0339 0.0490
0.75 0.0813 0.0696 0.0439 0.0745 0.2232 0.0905 0.2386 0.0897 0.0888
0.90 0.0972 0.0891 0.0993 0.0937 0.1653 0.1823 0.0872 0.0914 0.0945

one-year-ahead forecasts

Q NFCI ICS U CrSpread ResInv PCE PERMIT PCEDG INDPRO
0.10 0.0841 0.0919 0.1415 0.0999 0.0804 0.1044 0.1660 0.1206 0.1114
0.25 0.0900 0.0460 0.0442 0.0612 0.0654 0.2221 0.0727 0.3168 0.0817
0.50 0.0512 0.0237 0.0358 0.0380 0.0909 0.3670 0.0460 0.1261 0.2212
0.75 0.1479 0.1071 0.1145 0.1174 0.1056 0.0879 0.0982 0.1533 0.0682
0.90 0.0915 0.0627 0.1247 0.0771 0.1205 0.1376 0.0789 0.1190 0.1880

Note: The table shows the combination weight for each individual model for a specifc
quantile at the end of the out-of-sample evaluation period.

Table 6: Combination weights at the end of evaluation sample - latest available release of
GDP.

one-quarter-ahead forecasts

Q NFCI ICS U CrSpread ResInv PCE PERMIT PCEDG INDPRO
0.1 0.0243 0.7941 0.0151 0.0371 0.0181 0.0305 0.0340 0.0102 0.0366
0.25 0.1310 0.0890 0.0810 0.1761 0.1051 0.1877 0.0580 0.1059 0.0662
0.50 0.0636 0.2290 0.2051 0.0714 0.0940 0.0931 0.0875 0.0659 0.0904
0.75 0.1482 0.0788 0.1024 0.1237 0.1347 0.1428 0.0859 0.0716 0.1118
0.90 0.0728 0.1150 0.0806 0.0733 0.1525 0.1541 0.0898 0.0706 0.1913

one-year-ahead forecasts

Q NFCI ICS U CrSpread ResInv PCE PERMIT PCEDG INDPRO
0.1 0.0373 0.7002 0.0259 0.0279 0.0318 0.0351 0.0300 0.0768 0.0349
0.25 0.0867 0.0945 0.1306 0.1213 0.0969 0.0488 0.1843 0.1541 0.0828
0.50 0.1047 0.1221 0.0627 0.1140 0.2924 0.0485 0.0883 0.0755 0.0917
0.75 0.0622 0.0554 0.1963 0.0342 0.0521 0.0915 0.1110 0.1179 0.2795
0.90 0.0424 0.0904 0.0362 0.2085 0.0595 0.0927 0.0595 0.1455 0.2653

Note: The table shows the combination weight for each individual model for a specific
quantile at the end of the out-of-sample evaluation period.

3.4 Robustness

We perform several robustness checks to evaluate the sensitivity of our results to the

specifications chosen. The results are described in this section, with tables and figures in

the Appendix.
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3.4.1 Rolling window

We test whether our out-of-sample forecasting results are sensitive to using a recursive

versus rolling window for model estimation. The baseline results are based on a recursive

window, starting from 89 in-sample observations between 1973Q1-1995Q4 and expanding

with each new forecast made. For the rolling window, we use a window size of 89, in

line with the starting window for the baseline. The results can be found in Section A.2.

From Table A.3 we can see that our quantile combination method still outperforms other

combination methods for both standard and weighted evaluation criteria. Figure A.1

confirms that this is not time-dependent. Calibration tests show that the model is still

well calibrated when using a rolling window for model estimation. As could be expected,

the combination weights for the various quantiles and horizons are different from the

baseline.

3.4.2 Non-parametric densities

We follow Mitchell et al. (2024) in constructing non-parametric densities using our quantile

forecasts. As this only affects the combination evaluation, and not the quantile combina-

tion, the results on the weights are the same as the baseline results. The comparison of

CRPS scores and the evaluation of calibration can be found in Section A.3. We can see

from Table A.6 that our quantile combination method yields higher forecast accuracy than

the alternative combination methods also for this specification. Table A.7 shows that the

model is less well calibrated for the one-year-ahead horizon when applying non-parametric

densities.

3.4.3 Including the COVID-19 pandemic

In order to evaluate the robustness of our conclusions when including the pandemic years

in our sample, we increase the sample to 2023Q3. Results are shown in Section A.4 and

are qualitatively similar.

4 Conclusion

In this paper, we propose a new forecast combination approach aimed at obtaining more

accurate density forecasts for real GDP growth. The method assigns weights to the

individual forecasts from the different indicators based on quantile scores as follows. First,

individual forecasts are generated using quantile regression models. Subsequently, these

individual forecasts are combined using a novel quantile combination approach, where

each quantile of the combined density forecast is constructed as a weighted combination

of the individual forecasts for the corresponding quantile. To address the heterogeneity

in forecast accuracy across different models and parts of the distribution, we allocate
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quantile-specific weights from each model using the quantile score introduced by Gneiting

and Ranjan (2011).

In an empirical application, we demonstrate the usefulness of our novel quantile com-

bination approach by forecasting real GDP growth for the Unites States for the period

1995Q1-2019Q4.

We show that density forecasts from our quantile combination approach outperform

forecasts from commonly used combination approaches, including Bayesian Model Aver-

aging, optimal combination of density forecasts as suggested by Hall and Mitchell (2007)

and equal weights. The superior performance holds regardless of whether we use the stan-

dard CRPS or any quantile-weighted version of the CRPS that emphasizes accuracy in

the centre, left or right tail of the distribution as the forecast accuracy measure. Impor-

tantly, the relative gains in forecasting performance from our combination approach are

not specific to observations in a certain region of the distribution. This improved out-of-

sample forecast performance is highly robust over time, showing a consistent and steady

improvement compared to the various alternative combination approaches across different

time periods. Therefore, the relative gain in terms of forecasting performance from our

model is not limited to specific observations or sub-periods within our forecasting sample.

Additionally, while Adrian et al. (2019) argue that financial conditions are particularly

informative about future downside macroeconomic risk, we demonstrate that quantile

regressions incorporating additional variables such as residential investments, building

permits and consumer confidence surveys yield more accurate forecasts for the lower left

quantile of the GDP distribution compared to quantile regressions that solely include the

NFCI. This finding suggests that there are other variables besides the NFCI that provide

valuable information about future downside macroeconomic risk. Focusing exclusively on

the NFCI may lead to overlooking crucial information from these other variables.

Furthermore, we document that data revisions have a greater impact on the tail of the

distribution than on the middle, making inference on quantile-specific forecasting perfor-

mance particularly sensitive to the choice of benchmark vintage compared to standard

point or density forecasts. Despite this sensitivity, the forecasting performance of our

quantile combination approach appears to be robust to the choice of benchmark vintage.

The flexibility of our approach allows weights to adjust based on forecasting performance

for different parts of the distribution, depending on the specific benchmark vintage se-

lected.

Finally, our approach is flexible and easy to implement. While we demonstrate its

usefulness by applying it to real GDP growth forecasting, its applicability extends far

beyond this specific use case.
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A Online Appendix

A.1 Description of data series

Table A.1: Description of data series

Label Transf Period Real-Time Description Source

rgdp ∆ln 59:Q1-19:Q4 91Q4-19Q4 Real GDP growth,
sa

AL

NFCI level 73:Q1-19:Q4 88Q1-19Q4 National Financial
Conditions Index

CF and AM

ICS level-100 60:Q1-19:Q4 98Q3-19Q4 Consumer
Sentiment Index

AL

U ∆ log 48:Q1-19:Q4 65Q4-19Q4 Unemployment
rate

AL

CrSpread Level 53:Q1-19:Q4 none Credit Spread:
BAA corporate
bond yield -

10-year treasury

F

ResInv ∆% 47:Q2-19:Q4 65Q4-19Q4 Real Gross Private
Domestic

Investment: Fixed
Investment:
Residential

AL

PCE ∆% 59:Q1-19Q4 79Q4-19:Q4 Personal
Consumption

Expenditures, SA,
Annual Rate

AL

Permit ∆% 60:Q1-19:Q4 99:Q3-19:Q4 New
Privately-Owned
Housing Units

Authorized (Total),
SA Annual Rate

AL

PCEDG ∆% 59:Q1-19:Q4 79Q4-19:Q4 Personal
Consumption
Expenditures:

Durable Goods, SA
Annual Rate

AL

INDPRO ∆% 59Q1:19Q4 70Q1:19Q4 Industrial
Production: Total

Index, SA

AL

Notes: Sources abbreviated as “F” denotes Federal Reserve Economic Data (FRED), as “AL”
denotes Federal Reserve Economic Real-Data (ALFRED) dataset, as “CF” denotes Federal
Reserve of Chicago and “AM” denotes Amburgey and McCracken (2023b).
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A.2 Rolling window results

Table A.3: Average CRPS values with emphasis on specific regions of the distribution -
using a rolling window of 89 observations.

one-quarter-ahead forecasts

Emphasis ν(q) EQ OPT BMA Q-comb
Uniform ν(q) = 1 0.428*** 0.670*** 0.785*** 0.292
Centre ν(q) = q(1− q) 0.471*** 0.731*** 0.864*** 0.057
Tails ν(q) = (2q − 1)2 0.328*** 0.524*** 0.617*** 0.066
Right Tail ν(q) = (2q − 1)2 0.286*** 0.772** 0.752*** 0.088
Left Tail ν(q) = (1− q)2 0.679*** 0.548*** 0.746*** 0.091
Heavy Tails ν(q) = (2q − 1)4 0.283*** 0.455*** 0.536*** 0.030

one-year-ahead forecasts

Emphasis ν(q) EQ OPT BMA Q-comb
Uniform ν(q) = 1 0.542*** 0.867*** 0.932** 0.372
Centre ν(q) = q(1− q) 0.570*** 0.908*** 0.972 0.069
Tails ν(q) = (2q − 1)2 0.480*** 0.776*** 0.829*** 0.097
Right Tail ν(q) = (2q − 1)2 0.374*** 0.899* 0.892*** 0.116
Left Tail ν(q) = (1− q)2 0.881 0.804*** 0.930*** 0.119
Heavy Tails ν(q) = (2q − 1)4 0.453*** 0.727*** 0.787*** 0.048

Note: The table reports average CRPS values with emphasis on specific regions of the
distribution (see Eq. (15), for various forecast combination approaches. The alternative
combination models EQ, OPT, BMA combines linear models, while Q-comb combines
quantile models. For the alternative models, we report the relative performance com-
pared to Q-comb. Thus, values > 1 denotes higher forecast accuracy than our quantile
combination. Stars indicate significance levels for Diebold-Mariano test of Q-comb versus
alternative approaches combinations.
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Figure A.1: Cumulative CRPS of the alternative combination approaches relative to
quantile combination for one-quarter and one-year ahead forecasts - using a rolling window
of 89 observations.
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Table A.4: Combination weights at the end of evaluation sample - using a rolling window
of 89 observations

one-quarter-ahead forecasts

Q NFCI ICS U CrSpread ResInv PCE PERMIT PCEDG INDPRO
0.10 0.1047 0.0749 0.1016 0.0583 0.0892 0.1115 0.1170 0.0933 0.2496
0.25 0.1041 0.1015 0.2280 0.0942 0.0551 0.0582 0.2095 0.0769 0.0724
0.50 0.1077 0.1001 0.0990 0.0902 0.0922 0.1518 0.0873 0.0769 0.1947
0.75 0.1079 0.0952 0.2141 0.0618 0.0894 0.0646 0.1106 0.0733 0.1832
0.90 0.0641 0.0791 0.1047 0.1977 0.0695 0.1174 0.2034 0.0814 0.0828

one-year-ahead forecasts

Q NFCI ICS U CrSpread ResInv PCE PERMIT PCEDG INDPRO
0.10 0.0568 0.0534 0.1278 0.0713 0.0924 0.0651 0.0588 0.2634 0.2111
0.25 0.1656 0.0501 0.0465 0.0799 0.0581 0.0981 0.0866 0.0724 0.3427
0.50 0.0291 0.0186 0.8484 0.0300 0.0099 0.0108 0.0185 0.0213 0.0135
0.75 0.1930 0.0472 0.3232 0.0523 0.0615 0.0549 0.0991 0.1115 0.0572
0.90 0.0832 0.0849 0.0853 0.0616 0.0612 0.0607 0.0549 0.4382 0.0699

Note: The table shows the combination weight for each individual model for a specific
quantile at the end of the out-of-sample evaluation period.

32



Figure A.2: Quantile combination weights over time for one-quarter-ahead forecasts for
all K = 9 forecasting models - using a rolling window of 89 observations.
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Figure A.3: Quantile combination weights over time for one-year-ahead forecasts for all
K = 9 forecasting models- using a rolling window of 89 observations.
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Figure A.4: Calibration of quantile-combined density forecast. Empirical CDF for PITs
with the empirical 5% critical values calculated using Bootstrap following Rossi and Sekh-
posyan (2019) - using a rolling window of 89 observations.
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Table A.5: Calibration tests statistics for quantile-combined forecasts - using a rolling
window of 89 observations.

one-quarter-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 1.075 1.333 1.472 1.810
Cramér–von Mises 0.258 0.445 0.584 0.816

p-values
Knüppel NW 0.972

one-year-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 1.395 1.579 1.743 2.054
Cramér–von Mises 0.419 0.674 0.879 1.348

p-values
Knüppel NW 0.846

Note: The null hypothesis of calibration is rejected for Kolmogorov–Smirnov and
Cramér–von Mises if the test statistic is greater than the bootstrapped critical values
following Rossi and Sekhposyan (2019); for Knüppel (2015) test rejects null hypothesis of
calibration if the p-value displayed here is lower than significance level.
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A.3 Constructing the density forecast non-parametrically fol-

lowing Mitchell et al. (2024)

Table A.6: Average CRPS values with emphasis on specific regions of the distribution -
quantiles fitted on a non-parametric distribution.

one-quarter-ahead forecasts

Emphasis ν(q) EQ OPT BMA Q-comb
Uniform ν(q) = 1 0.446*** 0.677*** 0.744*** 0.319
Centre ν(q) = q(1− q) 0.492*** 0.738*** 0.816*** 0.062
Tails ν(q) = (2q − 1)2 0.338*** 0.526*** 0.577*** 0.071
Right Tail ν(q) = (2q − 1)2 0.289*** 0.793** 0.662*** 0.092
Left Tail ν(q) = (2q − 1)2 0.710*** 0.551*** 0.752*** 0.103
Heavy Tails ν(q) = (2q − 1)4 0.288*** 0.451*** 0.500*** 0.032

one-year-ahead forecasts

Uniform ν(q) = 1 0.564*** 0.861*** 0.892** 0.403
Centre ν(q) = q(1− q) 0.595*** 0.904*** 0.938 0.075
Tails ν(q) = (2q − 1)2 0.500*** 0.766*** 0.795*** 0.105
Right Tail ν(q) = (2q − 1)2 0.385*** 0.871** 0.836** 0.122
Left Tail ν(q) = (1− q)2 0.910 0.815*** 0.904*** 0.132
Heavy Tails ν(q) = (2q − 1)4 0.468*** 0.722*** 0.754*** 0.052

Note: The table reports average CRPS values with emphasis on specific regions of the
distribution (see Eq. (15), for various forecast combination approaches. The alternative
combination models EQ, OPT, BMA combines linear models, while Q-comb combines
quantile models. For the alternative models, we report the relative performance com-
pared to Q-comb. Thus, values > 1 denotes higher forecast accuracy than our quantile
combination. Stars indicate significance levels for Diebold-Mariano test of Q-comb versus
alternative approaches combinations.
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Figure A.5: Cumulative CRPS of the alternative combination approaches relative to
quantile combination for one-quarter and one-year ahead forecasts - quantiles fitted on a
non-parametric distribution.
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Figure A.6: Calibration of quantile-combined density forecast. Empirical CDF for PITs
with the empirical 5% critical values calculated using Bootstrap following Rossi and Sekh-
posyan (2019) - quantiles fitted on a non-parametric distribution.
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Table A.7: Calibration tests statistics for quantile-combined forecasts fitted on a non-
parametric distribution.

one-quarter-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 0.949 1.303 1.410 1.728
Cramér–von Mises 0.221 0.441 0.560 0.845

p-values
Knüppel NW 0.159

one-year-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 2.536 1.890 2.172 3.2884
Cramér–von Mises 1.895 0.999 1.301 2.684

p-values
Knüppel NW 0.021

Note: The null hypothesis of calibration is rejected for Kolmogorov–Smirnov and
Cramér–von Mises if the test statistic is greater than the bootstrapped critical values
following Rossi and Sekhposyan (2019); for Knüppel (2015) test rejects null hypothesis of
calibration if the p-value displayed here is lower than significance level.
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A.4 Including the COVID-19 Pandemic

Table A.8: Average CRPS values with emphasis on specific regions of the distribution.
Combined quantiles fitted to a skew t-distribution - sample up to 2023Q3, including the
COVID-19 pandemic.

one-quarter-ahead forecasts

Emphasis ν(q) EQ OPT BMA Q-comb
Uniform ν(q) = 1 0.544*** 0.633* 0.704** 0.455
Centre ν(q) = q(1− q) 0.574*** 0.664 0.739* 0.085
Tails ν(q) = (2q − 1)2 0.459*** 0.543* 0.608** 0.113
Right Tail ν(q) = (2q − 1)2 0.391*** 0.676* 0.648* 0.138
Left Tail ν(q) = (2q − 1)2 0.777 0.564 0.716*** 0.146
Heavy Tails ν(q) = (2q − 1)4 0.426*** 0.505** 0.567** 0.055

one-year-ahead forecasts

Emphasis ν(q) EQ OPT BMA Q-comb

Uniform ν(q) = 1 0.689 0.825** 0.92** 0.584
Centre ν(q) = q(1− q) 0.707 0.848** 0.946* 0.106
Tails ν(q) = (2q − 1)2 0.639 0.768*** 0.855*** 0.159
Right Tail ν(q) = (2q − 1)2 0.510*** 0.816** 0.879** 0.182
Left Tail ν(q) = (2q − 1)2 0.990* 0.808*** 0.926** 0.189
Heavy Tails ν(q) = (2q − 1)4 0.611* 0.734*** 0.816*** 0.080

Note: The table reports average CRPS values with emphasis on specific regions of the
distribution (see Eq. (15), for various forecast combination approaches. The alternative
combination models EQ, OPT, BMA combines linear models, while Q-comb combines
quantile models. For the alternative models, we report the relative performance com-
pared to Q-comb. Thus, values > 1 denotes higher forecast accuracy than our quantile
combination. Stars indicate significance levels for Diebold-Mariano test of Q-comb versus
alternative approaches combinations.
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Figure A.7: Cumulative CRPS of the alternative combination approaches relative to
quantile combination for one-quarter and one-year ahead forecasts - sample up to 2023Q3,
including the COVID-19 pandemic.
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Table A.9: Combination weights at the end of evaluation sample - sample up to 2023Q3,
including the COVID-19 pandemic.

one-quarter-ahead forecasts

Q NFCI ICS U CrSpread ResInv PCE PERMIT PCEDG INDPRO
0.10 0.1765 0.1168 0.0683 0.0740 0.1704 0.1234 0.0765 0.1095 0.0845
0.25 0.0832 0.1259 0.1043 0.0469 0.0684 0.0557 0.3005 0.1013 0.1140
0.50 0.2224 0.0694 0.0525 0.0734 0.1057 0.0600 0.2704 0.0618 0.0843
0.75 0.0482 0.0225 0.0291 0.2538 0.5012 0.0423 0.0510 0.0334 0.0186
0.90 0.1494 0.1500 0.0884 0.1201 0.1457 0.1165 0.0718 0.0843 0.0739

one-year-ahead forecasts

Q NFCI ICS U CrSpread ResInv PCE PERMIT PCEDG INDPRO
0.10 0.1051 0.1110 0.1217 0.0753 0.0981 0.1350 0.1217 0.1369 0.0950
0.25 0.0818 0.0785 0.1184 0.1021 0.1847 0.1208 0.1639 0.0711 0.0786
0.50 0.0705 0.0883 0.1237 0.1462 0.0540 0.0911 0.0731 0.2516 0.1015
0.75 0.1600 0.0764 0.1104 0.1627 0.0908 0.1502 0.1107 0.0907 0.0482
0.90 0.0716 0.0722 0.0586 0.1033 0.0717 0.3620 0.0604 0.1374 0.0628

Note: The table shows the combination weight for each individual model for a specific
quantile at the end of the out-of-sample evaluation period.
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Figure A.8: Quantile combination weights over time for one-quarter-ahead forecasts for
all K = 9 forecasting models - sample up to 2023Q3, including the COVID-19 pandemic.
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Figure A.9: Quantile combination weights over time for one-year-ahead forecasts for all
K = 9 forecasting models - sample up to 2023Q3, including the COVID-19 pandemic.
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Figure A.10: Calibration of quantile-combined density forecast. Empirical CDF for PITs
with the empirical 5% critical values calculated using Bootstrap following Rossi and Sekh-
posyan (2019). Sample up to 2023Q3, including the COVID-19 pandemic.
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Table A.10: Calibration tests statistics for quantile-combined forecasts - sample up to
2023Q3, including pandemic.

one-quarter-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 1.143 1.384 1.485 1.844
Cramér–von Mises 0.275 0.398 0.497 0.738

p-values
Knüppel NW 0.887

one-year-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 1.581 1.473 1.756 2.179
Cramér–von Mises 0.633 0.665 0.854 2.042

p-values
Knüppel NW 0.702

Note: The null hypothesis of calibration is rejected for Kolmogorov–Smirnov and
Cramér–von Mises if the test statistic is greater than the bootstrapped critical values
following Rossi and Sekhposyan (2019); for Knüppel (2015) test rejects null hypothesis of
calibration if the p-value displayed here is lower than significance level.
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A.5 Additional results when using alternative GDP vintages

A.5.1 First Release of GDP

Figure A.11: Quantile combination weights over time for one-quarter-ahead forecasts for
all K = 9 forecasting models - first release of GDP.

10th Percentile 25th Percentile

Q1-95 Q1-00 Q1-05 Q1-10 Q1-15 Q1-20
0

0.2

0.4

0.6

0.8

1

Q1-95 Q1-00 Q1-05 Q1-10 Q1-15 Q1-20
0

0.2

0.4

0.6

0.8

1

50th Percentile 75th Percentile

Q1-95 Q1-00 Q1-05 Q1-10 Q1-15 Q1-20
0

0.2

0.4

0.6

0.8

1

Q1-95 Q1-00 Q1-05 Q1-10 Q1-15 Q1-20
0

0.2

0.4

0.6

0.8

1

90th Percentile

Q1-95 Q1-00 Q1-05 Q1-10 Q1-15 Q1-20
0

0.2

0.4

0.6

0.8

1

NFCI

ICS

U

CrSpread

ResInv

PCE

PERMIT

PCEDG

INDPRO

44



Figure A.12: Quantile combination weights over time for one-year-ahead forecasts for all
K = 9 forecasting models - first release of GDP.
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Figure A.13: Cumulative CRPS of the alternative combination approaches relative to
quantile combination for one-quarter and one-year ahead forecasts - first release of GDP.
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Figure A.14: Calibration of quantile-combined density forecast. Empirical CDF for PITs
with the empirical 5% critical values calculated using Bootstrap following Rossi and Sekh-
posyan (2019) - first release of GDP.
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Table A.11: Calibration tests statistics for quantile-combined forecasts - first release of
GDP.

one-quarter-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 1.468 1.505 1.737 2.136
Cramér–von Mises 0.627 0.580 0.806 1.324

p-values
Knüppel NW 0.863

one-year-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 1.446 1.413 1.572 2.076
Cramér–von Mises 0.403 0.553 0.736 0.970

p-values
Knüppel NW 0.735

Note: The null hypothesis of calibration is rejected for Kolmogorov–Smirnov and
Cramér–von Mises if the test statistic is greater than the bootstrapped critical values
following Rossi and Sekhposyan (2019); for Knüppel (2015) test rejects null hypothesis of
calibration if the p-value displayed here is lower than significance level.
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A.5.2 Latest available release of GDP

Figure A.15: Quantile combination weights over time for one-quarter-ahead forecasts for
all K = 9 forecasting models - latest available release of GDP.
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Figure A.16: Quantile combination weights over time for one-year-ahead forecasts for all
K = 9 forecasting models - latest available release of GDP.
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Figure A.17: Cumulative CRPS of the alternative combination approaches relative to
quantile combination for one-quarter and one-year ahead forecasts - latest available release
of GDP.
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Figure A.18: Calibration of quantile-combined density forecast. Empirical CDF for PITs
with the empirical 5% critical values calculated using Bootstrap following Rossi and Sekh-
posyan (2019) - latest available release of GDP.
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Table A.12: Calibration tests statistics for quantile-combined forecasts - latest release.

one-quarter-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 0.973 1.491 1.705 2.295
Cramér–von Mises 0.135 0.645 0.824 1.747

p-values
Knüppel NW 0.996

one-year-ahead combined density forecasts

Calibration Tests Statistic Bootst. Critical Values at
10% s.l. 5% s.l. 1% s.l.

Kolmogorov–Smirnov 1.587 1.976 2.170 2.539
Cramér–von Mises 0.923 1.426 1.801 2.763

p-values
Knüppel NW 0.784

Note: The null hypothesis of calibration is rejected for Kolmogorov–Smirnov and
Cramér–von Mises if the test statistic is greater than the bootstrapped critical values
following Rossi and Sekhposyan (2019); for Knüppel (2015) test rejects null hypothesis of
calibration if the p-value displayed here is lower than significance level.
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