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1 INTRODUCTION

Price inflation has remained remarkably stable in the United States since the mid 1990s.
While a new regime may arise in the aftermath of COVID, the last few decades have
delivered a major decline in inflation volatility, without a comparable decline in economic
activity. This is shown in Figure 1. During the pre-Great Recession boom, inflation
(measured with the GDP deflator) was stubbornly stable, barely above 2 percent. During
the Great Recession, in face of the largest decline in real economic activity since the Great
Depression, inflation declined by only around two percent. In the aftermath of the Great
Recession, real economic activity recovered (albeit slowly), unemployment reached a 50-
year low slightly below 4 percent but inflation remained consistently below 2 percent.

Why has inflation become so stable and why has it disconnected from real economic
activity? These are the questions we aim to address in this paper. At least three different
explanations are proposed in the literature: the first (and perhaps most widely accepted
narrative) points to a decline in the slope of the Phillips curve, a structural equation de-
scribing how pressure in the economy translates into inflation. Examples include Ball and
Mazumder (2011), Blanchard (2016), Stock and Watson (2020), Del Negro, Lenza, Prim-
iceri, and Tambalotti (2020) and Inoue, Rossi, and Wang (2022) among others. Potential
reasons for such a flattening include a more prominent role for global factors (such as
increased import competition), rising market concentration, changes in the network struc-
ture of the US production sector (cf. Forbes (2019), Obstfeld (2020), Heise, Karahan,
and Şahin (2022), Rubbo (2023) and Ascari and Fosso (2024) among others), or differ-
ences in financial conditions across firms (cf. Gilchrist, Schoenle, Sim, and Zakrajšek
(2017)). A second explanation highlights the role of monetary policy: the Federal Re-
serve may have become more aggressive over time with respect to achieving its inflation
stability mandate (McLeay and Tenreyro, 2020). Proponents of this view acknowledge
that the Phillips curve could be alive and stable, and instead argue that stricter inflation
targeting has led to smaller footprints associated with demand factors. This may have re-
sulted in declining inflation volatility. The third explanation concerns a potential change
in the composition of shocks over time (Galı́ and Gambetti (2009), Gordon (2013) and
Hobijn (2020)). Supply shocks in particular may have become relatively more prominent
or more concentrated in specific periods, as was the case for oil shocks in the aftermath of
the Great Recession (Coibion and Gorodnichenko, 2015). If this is the case, then inflation
may co-move less with real economic activity even if both the Phillips curve slope and the
stance of monetary policy remain stable. We refer to the three explanations summarized
above as the slope hypothesis, the policy hypothesis, and the shock hypothesis.

In this paper, we apply some simple arithmetics which allow us to evaluate the three
main explanations for the observed disconnect between inflation and economic activity.
Our arithmetics are rather uncontroversial and consistent, for example, with the canonical
New Keynesian model described in Galı́ (2008). Since that model features nominal rigidi-
ties, it can be summarized in the output gap-inflation space by an upward-sloping supply
curve (the Phillips curve) and a downward-sloping demand curve (the investment-savings
curve). The supply curve is upward-sloping because demand creates resource scarcity
and motivates firms to raise prices. The demand curve is downward-sloping because the
central bank responds to inflation by hiking its policy rate, causing a decline in aggre-
gate demand for goods and services. Now, consider an econometrician who lives in the
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Figure 1: The evolution of inflation (GDP deflator) and the output gap
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world just described and would like to regress inflation on the output gap in order to learn
about an observed inflation disconnect. We inspect the properties of structural supply and
demand, and formally derive the following testable implications that the econometrician
may confront with data: first, the slope hypothesis–by proposing a flattening of aggre-
gate supply while the curvature of demand remains fixed–is the only one that implies a
less positive regression slope when data are purged for supply-side shocks. The policy
hypothesis in contrast–by proposing a flattening of aggregate demand while the curvature
of supply remains fixed–is unique in that it implies a less negative regression slope when
data are purged for demand-side shocks. Intuitively, stricter central bank commitment to
inflation stability translates into smaller inflation movements and a flatter demand curve.
Finally, the shock hypothesis is the only narrative that implies stable regression slopes
when we condition either on demand shocks or on supply shocks. This hypothesis advo-
cates changes in the cocktail of realized shocks rather than in the responsiveness of supply
and demand to a given disturbance. Combined, our simple arithmetics give rise to a set of
testable hypotheses which enable us to disentangle the competing explanations. All that
is needed is a way to purge demand from supply in the observable, unconditional data.

In order to confront the arithmetics just described with actual data, we fit a structural
vector autoregression (SVAR) model to postwar US macro data on the GDP deflator and
the output gap as computed by the Congressional Budget Office (CBO). Importantly,
our observed output gap is measured in deviation from some notion of a slow-moving
trend, not in deviation from a hypothetical equilibrium with flexible prices. While this is
completely standard for output gap estimates provided by statistical agencies (cf. Coibion,
Gorodnichenko, and Ulate (2018)), it implies that all supply-side shocks (not only cost-

3



push or markup shocks) shift the supply curve and must be accounted for. Thus, our
empirical model is relatively general and imposes only a minimal set of sign restrictions
to disentangle demand shocks from supply shocks. With the two shocks identified, one
can estimate the slopes of aggregate demand and supply (each corresponds to a regression
line fitting a cloud of data points generated by one of the identified shocks), and check
to what extent these two conditional slopes have changed over time. This is exactly what
we do. The main result from this exercise is that postwar US data call for a stable supply
curve, combined with a substantially flatter demand curve since the mid 1990s. These
findings are clearly at odds with a decline in the Phillips curve slope, but fully consistent
with stricter inflation targeting.

The empirical slope results just presented are complemented with an inspection of
conditional variances: we derive analytical expressions for the shock decomposition and
show that, according to theory, demand shocks should become increasingly important for
the output gap if the slope hypothesis is true, while the policy hypothesis and the shock
hypothesis both imply a relative rise in the importance of supply shocks. The policy
hypothesis in particular leads to smaller shifts in the demand curve even if the volatility
of fundamental demand shocks has remained unchanged. Thus, a variance decomposition
of the output gap in data may serve as a useful cross-check for our main empirical results.
Interestingly, when we compute the variance decomposition of the CBO output gap, we
find a rise in the relative importance of supply-side shocks after the mid 1990s, lending
additional support to the policy hypothesis.

Our baseline empirical results are robust to a large number of additional sensitivity
checks: among others, we inspect alternative measures of inflation and real economic
activity, consider alternative sample periods, as well as extensions of the SVAR model
which include survey data on inflation expectations, or data on interest rates. A flatter de-
mand slope, and a relative rise in supply-driven output gap volatility, emerge in all cases.
A stable (or even steepening) supply slope is found in the vast majority of experiments.
Thus, our simple arithmetics speaks clearly in favor of a policy explanation: the observed
decline in inflation volatility, and the emerging disconnect between inflation and real eco-
nomic activity, seem to arise mainly because the Federal Reserve has become more firmly
committed to its inflation target over time. The slope and shock hypotheses, by contrast,
are largely rejected when the simple arithmetics are applied to conditional volatility in the
data.

How does this paper speak to existing literature? We are definitely not the first to
highlight the potentially important role of supply shocks for inflation dynamics (cf. Ho-
bijn (2020), Gordon (2013), Hasenzagl, Pellegrino, Reichlin, and Ricco (2022) among
others). However, our contribution is to show how a joint assessment of potential changes
in demand and supply slopes, which in turn requires that we identify both types of shocks,
can be key to understanding the apparent disconnect between inflation and economic ac-
tivity. In addition, we stress the importance of controlling for all supply shocks. The
literature often controls only for cost-push shocks, a very specific type of supply shock.

Most importantly, our paper contributes to a vast empirical literature studying the
structural relationship between inflation and economic activity. Traditionally, most pa-
pers discuss approaches and challenges to the estimation of the Phillips curve in a single
equation framework (cf. Galı́ and Gertler (1999), Sbordone (2002) and Kleibergen and
Mavroeidis (2009) among many others). However, Mavroeidis, Plagborg-Møller, and
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Stock (2014) highlight how estimates of Phillips curve parameters are subject to weak
instrument problems. The authors conclude that new datasets and new identification ap-
proaches are needed to reach an empirical consensus.

In terms of new datasets, Imbs, Jondeau, and Pelgrin (2011) estimate Phillips curves
at the sectoral level using French data and then derive implications for monetary policy.
More recently Hazell, Herreno, Nakamura, and Steinsson (2022) estimate the slope of the
Phillips curve in the cross-section of US states and find only a modest decline in the slope
of the Phillips curve since the 1980s. They also construct an aggregate Phillips curve slope
and conclude that there is no missing inflation or deflation in the most recent business cy-
cles. Similar results are found by Fitzgerald, Jones, Kulish, and Nicolini (2020) who use
US city and state level data. Finally, Beraja, Hurst, and Ospina (2019) combine regional
and aggregate data to investigate the connection between wages and unemployment with
a special focus on the slope of the wage Phillips curve.

In terms of new identification strategies, the literature on Phillips curve estimation has
engaged in a search for better instruments for demand-driven economic activity. Barni-
chon and Mesters (2020), for example, find that conventional methods (including the use
of predetermined variables as instruments) substantially underestimate the slope of the
Phillips curve. They instead exploit identified monetary policy shocks. Taking a multi-
variate approach, Del Negro et al. (2020) show that post-1990s inflation barely reacts in
response to a shock to the excess bond premium, i.e. a shock that behaves like a typi-
cal demand shifter. Relatedly, Ascari and Fosso (2024) estimate a SVAR with common
trends and find evidence of more muted inflation responses to business cycle shocks in
recent years. A flattening of the Phillips curve is also found by Inoue et al. (2022) in
the context of an instrumental variables model with time-varying parameters while Wong
(2013) finds only a limited flattening. While admittedly simple, our set-up allows us to
evaluate all of the three explanations for the inflation puzzle in a unified framework, based
on a set of simple identification restrictions derived from theory. To the best of our knowl-
edge, this is the first paper to provide such a joint analysis.1 The paper closest to us is
perhaps Galı́ and Gambetti (2020), who use a SVAR model to purge the data for wage
mark-up shocks when estimating the wage Phillips curve. We instead focus on the con-
ventional price Phillips curve, and also stress the importance of controlling for all supply
shocks. Finally, the use of conditional regressions on data filtered through a SVAR model
is pursued also in Debortoli, Galı́, and Gambetti (2020) to estimate a monetary policy
rule.

The rest of the paper is organized as follows: Section 2 uses a textbook New Key-
nesian model to discuss and formally derive some simple arithmetics which govern the
structural relationship between output and inflation. Section 3 describes our methodolog-
ical approach. Section 4 documents the main empirical results while Section 5 provides a
battery of robustness tests. Section 6 relates our findings to recent events and to selected
contributions in the literature. Finally, Section 7 concludes.

1Historically the SVAR approach has been used mainly to study the long-run trade-off between inflation
and unemployment (cf. King and Watson (1994), Cecchetti and Rich (2001), Benati (2015), Barnichon
and Mesters (2021) and Ascari, Bonomolo, and Haque (2022)).
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2 THEORETICAL DISCUSSION

To organize ideas, we start with a textbook New Keynesian model in log-linearized form
(see Woodford (2003) and Galı́ (2008) for further details). It is summarized below:

yt = Etyt+1 −
1

σ
(it − Etπt+1 − ut) (1)

yt = at + nt (2)
wt = ψt + σyt + φnt (3)
mct = wt − at (4)
πt = βEtπt+1 + λmct + zt (5)

Conditional on monetary policy and exogenous disturbances, these five equations char-
acterize the dynamics of five endogenous variables, all defined in log deviations from
their respective steady state (or equivalently, from trend) values2: the output gap yt, hours
worked nt, the real wage wt, real marginal costs mct, and price inflation πt. The vari-
ables at, ψt, and zt are interpreted, respectively, as exogenous productivity, labor supply,
and cost-push shock disturbances. ut is a demand or discount factor disturbance. All pa-
rameters have the usual interpretation, including λ = (1−θ)(1−βθ)

θ
, with θ being the Calvo

probability in any given period of not being able to adjust the price. The model is closed
with a specification of monetary policy. As a baseline, we assume that the nominal interest
rate it is determined by a simple Taylor rule:

it = ϕππt + ϕyyt +mt (6)

mt captures exogenous deviations from the rule, so-called monetary policy disturbances.
Importantly, stricter inflation targeting is captured by a rise in ϕπ.

Two simplifications will be useful for our purpose: first, one can combine equations
(2)-(4) with (5) in order to arrive at the canonical New Keynesian Phillips curve:

πt = βEtπt+1 + κyt + st, (7)

where we have introduced the parameter κ = λ (σ + φ) and collected the three supply
disturbances in st = zt+λψt−λ (1 + φ) at. Second, one can use equation (6) to substitute
out the nominal interest rate it from (1). Collecting the two demand disturbances in
dt = ut −mt we arrive at

yt =
1

σ + ϕy
(σEtyt+1 − ϕππt + Etπt+1 + dt) . (8)

The two equations above summarize our main objects of interest: first, aggregate sup-
ply is given by the New Keynesian Phillips curve in (7) and naturally upward-sloping in
the (yt, πt)-space. A flattening of the structural Phillips curve amounts to a decline in

2Variable deviations from a counterfactual flex-price equilibrium, in contrast, are important for welfare and
appear frequently in textbooks. However, the notion of e.g. output in deviation from some trend is more
in line with operational definitions used by statistical agencies. The measure of potential output published
by the CBO, for example, is a slow-moving variable rather than an erratic series driven by short-term
fluctuations. It is exactly the latter one would expect, had one defined potential as the flex-price outcome.
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κ. Second, aggregate demand (accounting for the central bank’s reaction function) is in-
stead downward-sloping in the (yt, πt)-space and given by (8).3 Stricter inflation targeting
amounts to a rise in ϕπ and a flatter (less negatively sloped) demand curve. Importantly,
the weakened relationship between inflation and output must stem from a combination
of changes in demand and supply curve slopes, as well as changes in how much the two
curves shift around.

A few key challenges emerge for applied researchers hoping to understand the empir-
ical disconnect between inflation and output: first, we observe only the evolving intersec-
tion between demand and supply, i.e. the realization of shifts in the two curves. Their
slopes, as well as changes in these slopes over time, are not directly observable. This
fundamental issue is essentially what we aim to address in the current paper. Second,
since the model variables are expressed in deviation from steady state or trend rather than
the flex-price counterfactual, all three supply shocks enter directly in equation (7).4 Thus,
simply controlling for cost-push shocks by adding e.g. energy prices to the empirical
specification is not sufficient: we need to control for all supply shocks when estimating
(7). Finally, note that the two demand shocks ut and mt do not enter the Phillips curve.
This illustrates that demand shocks may serve as valid and relevant instruments for yt if
we want to recover the supply slope. Likewise, the components of st shift the supply
curve and may, therefore, help us recover the demand curve slope.

In order to further discuss the identification challenges involved, and to highlight our
proposed identification strategy, we find it instructive to work with the model’s solution.
To this end we impose the heroic assumption that dt and st are independently and identi-
cally distributed with variances σ2

d and σ2
s , respectively. This i.i.d. assumption is relaxed

in Appendix A where we instead consider the more common assumption that shocks fol-
low separate AR(1) processes. None of our conclusions are altered in this case. Analytical
solutions for output and inflation follow:

yt =
1

σ + ϕy + κϕπ
(dt − ϕπst)

πt =
1

σ + ϕy + κϕπ
[κdt + (σ + ϕy) st]

Suppose that we estimate, by OLS, the simple regression equation

πt = γyt + εt

using data generated from this stylized model. The projection coefficient γ is best un-
derstood as a Phillips correlation, along the lines of Reis and Watson (2010) and Stock
and Watson (2020). It may or may not be informative about the structural Phillips curve
slope κ. Importantly, the analytical solutions above allow us to derive expressions for
the γ ≡ cov(πt,yt)

var(yt)
in closed form. What can these closed form expressions tell us about

demand and supply curve slopes? That critically depends on our treatment of data.
3A similar picture emerges if we instead assume optimal monetary policy: suppose that the central bank
minimizes 1

2

[
(πt +mt)

2
+ αy2t

]
subject to equations (1) and (7), and under full discretion. The weight α

captures the relative importance of a stable output gap while mt is interpreted as a monetary policy shock.
The implied targeting rule, πt = −α

κyt − mt, is once again a downward sloping demand curve in the
(yt, πt)-space.

4If we consider output in deviation from its counterfactual when prices are flexible, then only the cost-push
shock enters the Phillips curve.
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2.1 THE UNCONDITIONAL PROJECTION COEFFICIENT

Suppose, first, that all the observable variation in data is explored. The resulting uncon-
ditional projection coefficient estimate, denoted by γ̂u, is given by

γ̂u =
κ (σ2

m + σ2
u)− ϕπ (σ + ϕy)σ

2
z −

ϕπκ2(σ+ϕy)

(σ+φ)2
σ2
ψ − ϕπκ2(σ+ϕy)(1+φ)

2

(σ+φ)2
σ2
a

σ2
m + σ2

u + ϕ2
πσ

2
z +

(
ϕπκ
σ+φ

)2

σ2
ψ +

(
ϕπκ(1+φ)
σ+φ

)2

σ2
a

=
κ− ϕπ (σ + ϕy)

σ2
s

σ2
d

1 + ϕ2
π
σ2
s

σ2
d

. (9)

Here σ2
d = σ2

m + σ2
u represents the total variance of demand side shocks, and σ2

s =

σ2
z +

(
κ

σ+φ

)2

σ2
ψ +

(
κ(1+φ)
σ+φ

)2

σ2
a represents the total variance of supply side shocks. Note

that σ2
s is a function of κ, an observation that we will exploit later.

A couple of remarks are in place: first, γ̂u is biased downwards relative to κ. The bias
stems from two supply-driven sources of variation: (i) the variance in yt given by ϕ2

πσ
2
s ,

and (ii) the negative covariance between πt and yt, given by −ϕπ (σ + ϕy)σ
2
s . Second,

the bias might evolve over time for reasons unrelated to the Phillips curve. A naive econo-
metrician observing a decline in γ̂u may erroneously conclude that the Phillips curve has
flattened even if κ has remained unchanged. The decline in γ̂u could very well be due to
stricter inflation targeting (ϕπ ↑), or to a rise in the relative volatility of supply-side shocks
((σ2

s/σ
2
d) ↑). The expression for γ̂u essentially reveals that one cannot use unconditional

data to separate Phillips curve changes from changes in policy or shocks. Luckily, the
good news is that we can exploit the variation in conditional data, a point which we turn
to next.

2.2 CONDITIONAL PROJECTION COEFFICIENTS

Suppose that we are able—somehow—to purge the data for all variation due to supply-
side shocks. This implies setting σ2

s = 0 in (9). The associated projection coefficient
estimate follows below:

γ̂s = κ (10)

We interpret γ̂s as the supply curve slope, given that it arises solely from shifts in demand.
This slope is clearly an unbiased estimate of κ. Thus, if we somehow can trace changes
in γ̂s, then it seems reasonable to attribute those to changes in the structural Phillips curve
slope κ. The stance of policy, or the composition of shocks, play no role for γ̂s in our
simple framework.

Next, suppose that we are able—somehow—to purge the data for all variation due to
demand side shocks. The implied estimate, this time conditional on supply shocks only,
follows below:

γ̂d = −σ + ϕy
ϕπ

(11)
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Figure 2: Three alternative explanations – simulated data
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(b) Policy story
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(c) Shock story
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Notes: Each column in the figure represents a separate explanation—the slope story is illustrated in column
(a), the policy story in column (b), and the shock story in column (c). The top subplot in each column
reports the unconditional (simulated) data augmented with the projection coefficient γ̂u. Data conditional
only on demand shocks and augmented with γ̂s are reported in the second row. Data conditional on supply
shocks and augmented with γ̂d are reported in the third. The slope story is illustrated with a rise in the
Calvo parameter from 0.75 in sample one (blue) to 0.875 in sample two (red). The policy story is shown as
a rise in ϕπ from 1.5 to 3 across the samples, while the shock story is a decline in the volatility of demand
shocks by 50%.

We refer to the projection coefficient γ̂d as the demand curve slope. As such, γ̂d is negative
and purely a function of the two policy parameters as well as σ, all of which are impor-
tant for the responsiveness of demand to prices. Stricter inflation targeting, in particular,
makes γ̂d flatter (less negative). Changes in the Phillips curve slope or in the composition
of shocks play no role for γ̂d in our framework.

Finally, the fact that both γ̂s and γ̂d are independent of shock volatilities allows us
to ignore the role of κ for σ2

s . Moreover, it allows us to formalize and set apart a third
explanation, the shock story: a rise in the relative importance of supply shocks has no
effect on our conditional regression slopes, and it is the only explanation among those
considered that has this particular property.

Figure 2 illustrates the implications from our discussion so far and serves to highlight
a number of testable predictions pursued in this paper. In the figure we report a battery of
scatter plots with data simulated from the theoretical model. Scatter plots are augmented
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with simple regression slopes.5 Consider first the slope story (first column). In this case
the following applies: if the observed decline in γ̂u (first row) is a consequence predomi-
nantly of a flatter Phillips curve slope κ, then we should also see a decline in γ̂s (second
row), combined with a relatively stable γ̂d (third row). If, instead, the decline in γ̂u is
driven by stricter inflation targeting (second column), then we should also find a rela-
tively stable γ̂s over time (second row), combined with a flattening (towards less negative
values) of γ̂d (third row). Finally, if the cause of a decline in γ̂u is that supply side shocks
have become more volatile relative to demand side shocks (third column), then we should
find relatively stable values of both γ̂s and γ̂d across sub-samples (second and third row).
Note that, in each column, the unconditional scatter plot in the top plot is the sum of the
two scatter plots below.

In total we have three alternative explanations of an observed decline in γ̂u: (i) the
slope story {γ̂s ↓, γ̂d unchanged}, (ii) the policy story {γ̂s unchanged, γ̂d ↑}, and (iii) the
shock story {γ̂s and γ̂d unchanged}. Together, these simple arithmetics constitute a set of
testable implications which we pursue empirically in the remainder of the paper.

2.3 CONDITIONAL VARIANCES

Conditional variances provide additional and complementary implications that can be
used to disentangle the slope hypothesis, the policy hypothesis and shock hypothesis. The
variance decomposition for the output gap can be expressed with the following analytical
expression:

V D (y|d) = σ2
d

σ2
d + ϕ2

πσ
2
z +

(
ϕπκ
σ+φ

)2

σ2
ψ +

(
ϕπκ(1+φ)
σ+φ

)2

σ2
a

V D (y|d) is the share of the total variance in output that is attributed to the two demand
shocks.6 It follows that we can exploit this variance decomposition to further disentangle
the competing explanations: if the slope story (κ ↓) is true, then we should observe a
rise in V D (y|d), i.a. a more important role for demand shocks over time. The policy
story (ϕπ ↑), in contrast, implies a decline in V D (y|d). Intuitively, ceteris paribus the
output gap responds more to a given shift in demand (supply) if the supply (demand)
curve becomes flatter. These implications for conditional variances are also visible in
Figure 2. When comparing sub-samples, we see that demand shocks become relatively
more important for output when the slope story applies, while the opposite is true for
the policy story. Note that a declining role of demand shocks for output gap fluctuations
naturally emerges also as a consequence of the shock story. However, an increase in the
relative volatility of supply shocks would imply a constant demand slope γ̂d over time,
as opposed to the flattening predicted by stricter monetary policy. It is in this way that
variance decompositions and slope inspections can provide complementary insights.

5The model’s parameters are set to standard values: the baseline calibration includes β = 0.99, σ = 1,
φ = 2, ϕπ = 1.5, ϕy = 0.125, and θ = 0.75. The standard deviations of shocks are set to σu = 1,
σm = σa = σψ = 0.25, and σz = 0.05 respectively. We let each of the shocks follow an AR(1) with an
autoregressive coefficient equal to 0.75.

6A further decomposition into the two different demand shocks would lead to the same expression for each
of the shocks, except that σ2

d would be replaced with either σ2
m or σ2

u, respectively.

10



2.4 TRANSMISSION LAGS

Are the simple arithmetics discussed above jointly exhaustive, or could important candi-
date explanations be left out? A fourth alternative may be of particular interest, namely
an event that triggers a simultaneous shift in both demand and supply curves. The sim-
ple model considered here features a so-called divine coincidence. It results from perfect
proportionality between marginal costs and the output gap and allows us to abstract from
simultaneous shifts in demand and supply. But proportionality seizes to hold if, for exam-
ple, wages are rigid or in the presence of an active fiscal policy. Thus, in Appendix B we
introduce fiscal policy and lay out the implications for our simple arithmetics. Equipped
with the analytical solution, we identify potential biases when simultaneous shifts occur
in response to government spending shocks, and argue that our simple arithmetics prove
useful even in such cases.

The remainder of this section, instead, focuses on another violation of divine coinci-
dence, namely the presence of transmission lags. Lags of various endogenous variables
(or “bells and whistles”) are often included in quantitative models to better account for
well-documented empirical moments in data (persistent and hump-shaped dynamics, for
example). The implications of transmission lags for our simple arithmetics are docu-
mented in two complementary ways: first, we add some of the most commonly used bells
and whistles to the baseline model, but keep the assumption of Calvo pricing. Second, we
disregard Calvo pricing altogether and instead assume sticky information as a source of
sluggish price adjustment.

2.4.1 HABITS, INDEXATION, AND INTEREST RATE INERTIA

Here we extend the baseline model along three dimensions: first, it is assumed that house-
holds derive utility from their consumption relative to the previous period’s aggregate
consumption, so-called (external) consumption habits. Second, firms that do not get to
update prices optimally are assumed to index prices partially to lagged inflation. Third,
we add interest rate inertia to the central bank’s reaction function. These extensions imply
that equations (1), (6) and (7) can be written as follows:

yt = Et (yt+1 − αyt) + αyt−1 −
1

σ
(it − Etπt+1 − ut)

πt = βEt (πt+1 − ζπt) + ζπt−1 + λmct + zt

it = ρiit−1 + (1− ρi) (ϕππt + ϕyyt) +mt

The parameter α governs the importance of habit persistence, ζ the degree of inflation
indexation, and ρi the degree of interest rate inertia. The rest of the model is unchanged.
Thus, α = ζ = ρi = 0 brings us back to the baseline.

In Figure 3 we redo the scatter plots in Figure 2, but with the calibration α = 0.75,
ζ = 0.5, and ρi = 0.75 as a starting point for the simulations. These numbers are
in the ballpark of those typically used in quantitative macro models. The presence of
transmission lags imply that conditional scatter plots become clouds rather than being
perfectly aligned along the regression line. Past realizations affect current outcomes,
and changes in the environment (e.g. changes in structural slopes or volatilities) will
in general impact both regression lines. Nevertheless, it is clear that the inclusion of
transmission lags does not significantly alter our simple arithmetics: a flattening of γ̂s in

11



Figure 3: Simulated data from a model with additional rigidities

(a) Slope story
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(b) Policy story
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(c) Shock story
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Notes: The slope story in column (a) is illustrated with a rise in the Calvo parameter from 0.75 in sample
1 (blue) to 0.875 in sample 2 (red). The policy story in column (b) is represented by a rise in ϕπ from 1.5
to 2.5 across the samples, while the shocks story in column (c) arises from a decline in the volatility of
demand shocks by 45%. See Figure 2 for additional details.

combination with a relatively stable γ̂d is still a unique feature of the slope story. Stability
in γ̂s combined with a flatter (less negative) γ̂d is still a unique feature of the policy story.
Finally, the shock story still implies stability in both γ̂s and γ̂d.

2.4.2 STICKY INFORMATION

In this section, we replace Calvo pricing with sticky information á la Mankiw and Reis
(2002) and Reis (2009). To this end, it is assumed that agents update their information set
infrequently: equilibrium outcomes today depend on past expectations about the current
state of affairs, giving rise to delayed and muted responses to shocks. Following Reis
(2009) we allow for sticky information both in the Phillips curve and in the IS equation:

pt = δp

∞∑
j=0

(1− δp)
j Et−j (pt +mct + zt)

pt = pt−1 + πt
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Figure 4: Simulated data from a model with sticky information

(a) Slope story
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(b) Policy story
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(c) Shock story
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Notes: The slope story in column (a) is illustrated with a 50% decline in the information updating parameter
δp, from 0.52 in sample one (blue) to 0.26 in sample two (red). The policy story in column (b) is shown as a
rise in ϕπ from 1.5 to 3 across the samples, while the shock story in column (c) is a decline in the volatility
of demand shocks by 50%. See Figure 2 for additional details.

yt = −δy
1

σ

∞∑
k=0

(1− δy)
k Et−kRt

Rt =
∞∑
k=0

Et [it+k − πt+1+k − ut+k]

The first two equations replace equation (6) and represent the Phillips curve under sticky
information. Each period, only a fraction δp of firms update their information set and set
prices accordingly. The remaining firms set prices based on what they thought would be
optimal the last time they acted on new information. Likewise, the last two expressions
above replace equation (1) in the baseline. Here only a fraction δy of consumers update
their information set each period. Rt represents the long real interest rate after taking into
account preference shocks. Note that δp = δy = 1 brings us back to full information and
flexible prices, i.e. the special case of the baseline model with θ = 0.

In Figure 4 we redo the scatter plots in Figure 2, but with the calibration δp = 0.52
and δy = 0.08 as a starting point for the simulations.7 These numbers are taken from
7When solving the sticky information model, we follow Verona and Wolters (2013) and truncate the infinite
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the posterior mean estimates in Reis (2009). Once again, we find that the inclusion of
transmission lags—this time due to sticky information—does not significantly alter the
simple arithmetics presented earlier: only the slope story implies a flattening of γ̂s and a
stable γ̂d. Only the policy story implies stable γ̂s and flatter γ̂d. Finally, only the shock
story implies unchanged slopes based on the conditional data.

3 EMPIRICAL APPROACH

The empirical approach we pursue in this paper is essentially a two-step procedure: in
the first step, referred to as the filtering step, we decompose the data into two compo-
nents driven by demand and supply shocks, respectively. This is done with SVAR mod-
els estimated with Bayesian techniques over the adjacent samples 1968:Q4-1994:Q4 and
1995:Q1-2019:Q4. We split the sample in 1994:Q4 in order to obtain two samples of
equal size and we consider alternative splittings in the sensitivity analysis. The determin-
istic component of the SVAR, which is obviously different across samples, captures the
dynamics of trend inflation over time.

In the second step, referred to as the regression step, we perform our joint test on
slopes and variance decompositions to evaluate the merits of the three proposed explana-
tions for the inflation puzzle. We thus run regressions on the filtered data in order to make
inference about the conditional relationship between output and inflation in both samples.
In addition, we inspect variance decompositions across samples.

The notation and the estimation of the SVAR model follow Arias, Rubio Ramirez, and
Waggoner (2018). The structural representation of the model can be written as follows:

Y ′
tA0 = x′tA+ + ε′t (12)

where Yt is a n × 1 vector of endogenous variables, εt is an n × 1 vector of exogenous
structural shocks, A0 and A′

+ = [A′
1, . . . , A

′
p, c

′] are matrices of parameters with A0 in-
vertible, and x′t = [Y ′

t−1, . . . , Y
′
t−p, 1] for 1 ≤ t ≤ T , with c a 1× n vector of parameters,

p the lag length, and T the sample size. The vector εt, conditional on past information
and the initial conditions Y0, ..., Y1−p, is Gaussian with mean zero and covariance matrix
In, the n × n identity matrix. The dimension of A+ is m × n where m = np + 1. The
reduced-form representation implied by Equation (12) is

Y ′
t = x′tB + u′t (13)

where B = A+A
−1
0 , u′t = ε′tA

−1
0 , and E[utu′t] = Σ = (A0A

′
0)

−1. The matrices B and Σ
are the reduced-form parameters, while A0 and A+ are the structural parameters.

Our baseline SVAR contains two variables observed at quarterly frequency:

Yt = (πt, yt)
′

πt represents one-period inflation in the GDP deflator while yt represents the quarterly
output gap computed by the CBO.

sums that arise from sticky information. Verona and Wolters (2013) document reasonably precise results
with 16 expectation lags. We include 32 lags to ensure accuracy.

14



Table 1: Sign restrictions - SVAR models

Panel (A) Demand ↑ Supply ↓
Inflation + +
Output gap + -

Panel (B) Demand ↑ Supply ↓ Residual
Inflation + + +
Output gap + - ⋆
Inflation expectations + + -

Panel (C) Demand ↑ Supply ↓ Policy ↓
Inflation + + +
Output gap + - +
Interest (or shadow) rate + ⋆ -

Panel (D) Demand ↑ Technology ↓ Labor Supply ↓ Policy ↓
Inflation + + + +
Output gap + - - +
Shadow rate + ⋆ ⋆ -
Real wages ⋆ - + ⋆

Note: Restrictions are imposed only on impact. The notation ⋆ means that no restriction is imposed.
In Panel (B) we add data on inflation expectations to the baseline setup. In Panel (C) we add interest
rates, while Panel (D) includes both interest rates and real wages as observables.

We estimate the SVAR model with four lags and a constant on quarterly data. We use
Bayesian methods with standard natural conjugate (Normal-Wishart) priors. Moreover,
we specify flat priors for the reduced form parameters and impose sign restrictions on
impact (and only on impact, as recommended by Canova and Paustian (2011)) to identify
the structural shocks. The QR decomposition algorithm proposed by Arias et al. (2018) is
used for this purpose.8 The algorithm is continued until we have obtained 10, 000 draws
that satisfy the imposed sign restrictions.9

Sign restrictions are specified in Table 1. Panel A summarizes our baseline identifica-
tion scheme, which disentangles demand shocks from supply shocks based on the impact
co-movement between inflation and the output gap.

We use the SVAR model as a filtering device to isolate the variation in historical data
due to supply and demand shocks, respectively. Thus, we are essentially interested in
historical decompositions. Given that our model is set identified, each of the 10, 000 ac-
cepted draws will be associated with a different historical decomposition (and also with
a different variance decomposition). In order to summarize this information into one de-
composition of the unconditional data, we proceed by choosing, at each point in time (i.e.

8This algorithm enables us to draw from a conjugate uniform-normal-inverse-Wishart posterior distribution
over the orthogonal reduced form parameterization, and then to transform the draws into the structural
parameterization.

9An important and interesting debate on the choice of priors in sign-restricted SVAR models is at play
at the frontier of the literature. Advantages and disadvantages of the conventional approach based on
Arias et al. (2018) are discussed in Baumeister and Hamilton (2015), Inoue and Kilian (2020) and Arias,
Rubio Ramirez, and Waggoner (2022). We acknowledge the importance of this debate.
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each quarter), the median contribution of each shock to fluctuations in inflation and in
the output gap. The final outcome of this exercise is one historical decomposition, with
each shock’s contribution representing the median across the 10, 000 alternative models.
Note that such a way to compute historical decompositions is recommended by Bergholt,
Canova, Furlanetto, Maffei-Faccioli, and Ulvedal (2024) to account properly for the un-
certainty surrounding the estimated deterministic component of the SVAR. Similarly, we
obtain a summary measure for the variance decomposition.

At this stage, some additional motivation for our identification strategy is in order.
The main advantage of using sign restrictions is that, in the baseline bivariate setup, they
form a set of mutually exclusive and jointly exhaustive identification restrictions. Only the
joint identification of the two shocks in the same framework allows us to make statements
on both the supply and the demand curves slopes. Previous papers focusing on specific
demand shocks (like monetary policy shocks in Barnichon and Mesters (2020) or shocks
to the excess bond premium in Del Negro et al. (2020)) were not equipped to identify
changes in the slope of the demand curve and thus could not exploit fully the simple
arithmetics implied by the New Keynesian theory. Identification schemes based on the
Cholesky decomposition identify usually only one shock of interest on the basis of timing
assumptions. Proxy measures of shocks obtained from external sources are not jointly
exhaustive since they do not explain fully the variation in the data while our shocks exhibit
that property by construction. Identification schemes based on long-run restrictions can,
in principle, disentangle supply shocks (defined as shocks with long-run effects on output)
and demand shocks (defined as shocks with purely transitory effects on output) in the
same set-up. However, Furlanetto, Lepetit, Robstad, Rubio Ramı́rez, and Ulvedal (2024)
show that the shock with long-run effects cannot (and should not) be associated only
with a supply shock in a large part of our sample: the shock with permanent effects on
output in a Blanchard-Quah decomposition would look like a demand shock in our second
sample. Against this background, we see the use of sign restrictions as the preferable
way to investigate our simple arithmetics in the data. The disadvantages of using such a
framework are that the model is set-identified (and therefore subject to model uncertainty
in addition to estimation uncertainty) and to the fact that several demand shocks (like
government spending, financial, monetary and discount factor shocks, just to name a few)
and several supply shocks (like technology, labor supply, mark-up and many others) are
commingled into only two innovations.10 All in all, we believe that the benefit of joint
exaustivity (i.e. the fact that the two shocks explain the entire variation in unconditional
data) are larger than the costs paid in terms of uncertainty and commingling of shocks.

4 RESULTS

This section presents estimates of conditional slopes and shock decompositions, and sum-
marizes the main results when we confront data with the simple arithmetics derived from
theory.

10Note, however, that it would be straightforward to identify several demand and supply shocks by imposing
additional restrictions in the context of a larger SVAR including more variables. Such an exercise might
significantly complicate the interpretation of the results. Nevertheless, we inspect larger SVAR models
with more shocks in various robustness exercises, see section 5.
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Figure 5: Empirical scatterplots

(a) Unconditional data

(b) Conditional on demand (c) Conditional on supply

Notes: Unconditional data vs. conditional data obtained from the estimated SVAR model. Corre-
sponding slope estimates are provided in Table 2.
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4.1 FROM UNCONDITIONAL TO CONDITIONAL SLOPES

In order to estimate the unconditional and conditional slopes relating inflation to the CBO
output gap, we consider the following simple regression equation:

πt = c1 (1 +Dtδc) + γ1 (1 +Dtδγ) yt + ut (14)

As in previous sections, we denote inflation by πt, and the output gap by yt. The dummy
variable Dt, which is equal to one in the second sample (and zero otherwise), allows
us to separately estimate projection coefficients for the output gap across samples.11 In
particular, we denote the projection coefficient in the first sample by γ1, and the projection
coefficient in the second sample by γ2 = γ1+δγ . A weakened relationship between output
and inflation is captured by a negative value of δγ .

To assess the competing explanations for a flatter statistical slope, we estimate equa-
tion (14) both on unconditional data and on conditional data generated by the SVAR
model in the filtering step. This allows us to contrast the unconditional estimates γ̂u,1 and
γ̂u,2 with the estimates based on conditional data across the two samples. We obtain γ̂s,1
and γ̂s,2 from data purged for supply shocks, and γ̂d,1 and γ̂d,2 from the data purged for
demand shocks. This leaves us with a set of estimated projection coefficients which, when
evaluated jointly, allows us to test the different explanations in a common framework.

As a reference, we start with a discussion of the unconditional data which are pre-
sented in the scatter plot in Figure 5a. The horizontal axis measures observations of the
CBO’s output gap, the vertical axis measures inflation in the GDP deflator (plotted in
deviation from its mean πt − c1 (1 +Dtδc)). The scatter plot is augmented with the re-
gression lines which represent the sample-specific, unconditional projection coefficients
γ̂u,1 and γ̂u,2.

Panel A in Figure 5 illustrates a major decline in the projection coefficient estimated
on unconditional data. Quantitatively, the estimated slope is γ̂u,1 = 0.26 during the sam-
ple period 1969:Q1-1994:Q4, but only γ̂u,2 = 0.12 during the period 1995:Q1-2019:Q4.
Thus, we observe a decline of more than 50% in the unconditional slope in the second
sample. We note that this decline has limited statistical significance given that the p-value
associated with δ̂u,y is 0.28. Nevertheless, as stated earlier, the decline in the unconditional
slope is in line with a large, yet growing literature emphasizing the weakened statistical
relationship between inflation and measures of economic activity. At first glance, one may
reach the conclusion that the weakened relationship comes about from a flatter, structural
Phillips curve. Note also, that the unconditional variance of both inflation and (to a lesser
extent) output is significantly smaller in the latter sample, consistent with the observation
that it spans the lion’s share of the so-called “Great Moderation”.

Panel B in Figure 5 plots the relationship between output gap and inflation when we
condition on the empirical variation attributed solely to identified demand shocks. Several
important observations emerge: first, the estimated projection coefficient is substantially
higher than its unconditional counterpart. This is reassuring given its interpretation as
a supply slope, as opposed to the likely downward bias in γ̂u, as emphasized earlier.
Second, the supply slope features only a minor decline across samples, from γ̂s,1 = 0.56
to γ̂s,2 = 0.53. This decline is far from significant statistically, with a p-value as high as

11Estimation of the interacted regression equation (14) on pooled data is equivalent to splitting the sample
and running two separate regressions.
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Figure 6: Variance decomposition of CBO’s output gap
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0.85 for δ̂s,y. Thus, the relationship between output and inflation, which has weakened
substantially in unconditional data for the US economy, remains almost unchanged once
we purge out supply-side variation. In this sense, we do not find empirical evidence of
a flattening of the Phillips curve. Rather, the Phillips curve seems to be alive and well.
Third, the reduced volatility of both inflation and output gap carries over when we zoom
in on demand-driven variation in the data.

Finally, Panel C in Figure 5 shows the results when we condition only on identified
supply shocks. Naturally, once we consider supply-side variation only, the relationship
between output and inflation turns negative. However, we find large differences in esti-
mated projection slopes across samples. In fact, the slope goes from γ̂d,1 = −0.41 to
γ̂d,2 = −0.09 and the p-value associated with δ̂d,y is 0.00. Thus, the null hypothesis of no
change in the demand slope across samples is rejected at any relevant significance level. It
is clear that our estimated demand curve slope changes from highly negative to relatively
flat. All in all, we conclude that there seems to be a significant flattening of the demand
slope, and this flattening is substantially larger than what we find when conditioning on
demand shocks. Thus, the evidence reported here points to a flattening of the demand
curve rather than the supply curve.

4.2 CONDITIONAL VARIANCES

Sample-specific variance decompositions of the CBO output gap are summarized in Fig-
ure 6. These variance decompositions are based on the scatterplots presented in Figure 5.
Supply shocks, in particular, explain 40% of the output gap in the first sample, but 61%
in the second sample. Consistent with the discussion in subsection 2.3, an increasing role
of supply shocks for the output gap is consistent with the view that the central bank has
focused more on inflation targeting, and at the same time speaks against a flattening of the
structural Phillips curve. Ceteris paribus, we would instead have expected to see a more
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dominant role of demand shocks in the second sample, had the slope of the Phillips curve
declined.

4.3 DISCUSSION

Recall our estimates for the regression slope conditional on demand shocks. They are
centered around 0.5 in both samples. Importantly, this number should not be interpreted
as evidence of a very steep Phillips curve. In fact, γ̂s is unbiased relative to κ only if
shocks are i.i.d., as in the stylized model analyzed in section 2. The more general case
with persistent shocks is discussed in Appendix A, which shows that persistence renders
γ̂s proportional to κ, but with an upward bias (see also Hazell et al. (2022) for a discussion
on this point). Just as an illustrative example; if demand shocks exhibit an autocorrelation
of 0.8, then γ̂s = 0.5 would imply a value of κ around 0.1, similar to values often used in
calibrated versions of the New Keynesian model. The only way to justify treating γ̂s as an
unbiased estimate of κ when shocks are persistent, is to properly control for expectations
as well. Appendix A provides further analytical details and discussions.

Our results on conditional slopes and conditional variances are consistent with a flat-
tening of the demand curve, whose slope in the canonical New Keynesian model is given
by the projection coefficient γ̂d = −σ+ϕy

ϕπ
. We believe the most natural interpretation for

such a flattening is a more aggressive Fed response to inflation fluctuations (i.e. an in-
crease in the coefficient ϕπ relative to the coefficient ϕy), in keeping with the estimates
presented in the seminal paper by Clarida, Galı́, and Gertler (2000). At the same time,
we acknowledge that an alternative interpretation may appear plausible to some: a higher
impact of interest rates on aggregate demand (lower σ) could also explain a flattening
of the demand curve. This could reflect better consumption smoothing opportunities for
example induced by more widespread asset market participation. However, two addi-
tional theoretical implications are in contrast with this alternative interpretation. First, a
decline in σ should also translate into a decline in γ̂s (recall that κ = λ (σ + φ)), Our
SVAR does not support this implication, see Figure 5. Second, a decline in σ should leave
the variance decomposition unaffected across samples, in contrast with the evidence pre-
sented in Figure 6. This latter implication follows if we substitute κ = λ (σ + φ) into the
variance decomposition of output, given analytically in subsection 2.3. Nonetheless, it is
well known that the degree of asset market participation may have a direct impact on the
slope of the demand curve (cf. Galı́, López-Salido, and Vallés (2007), Bilbiie (2008) and
Bilbiie and Straub (2013)). In light of this evidence, an increase in stock market partic-
ipation could rationalize a flattening of the demand curve. However, Albonico, Ascari,
and Haque (2023) find that such an increase has been modest (and irrelevant for macroe-
conomic dynamics), thus casting doubts on this alternative explanation for the flattening
of the demand curve.

Finally, our simple arithmetics can be challenged in richer and more complicated
models. For example, the slope of the Phillips curve may depend endogenously on the
stance of monetary policy (cf. Afrouzi and Yang (2021) and L’Huillier, Phelan, and Zame
(2022)). The simplest way to introduce dependency of κ on ϕπ in our setting would be to
introduce a working capital channel, so that the interest rate affects marginal costs directly
(Ravenna and Walsh, 2006). However, this would lead to a steeper Phillips curve slope
when ϕπ increases, an implication that seems less relevant in this context.
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Figure 7: Phillips multipliers

Notes: Phillips multipliers obtained from cumulative regressions over the horizons h ∈ [0, ..., 8], for
sample 1 (blue) and sample 2 (red). Panel A: Unconditional data. Panel B: Conditional on demand
shocks only. Panel C: Conditional on supply shocks only. The confidence bands are computed as
±1.65 x Newey-West robust standard errors.

At this point it should be clear that, in order to quantify the actual, structural Phillips
curve slope directly, we would have to assume a specific functional form for the Phillips
curve, including the number of lags to include. Here, instead, we compute a variant of the
so-called Phillips multiplier, following Barnichon and Mesters (2021). This statistic is a
non-parametric characterization of the trade-off between inflation and economic activity.
While the Phillips multiplier is reduced-form in nature, it may help us to shed additional
light on possible changes in the slope.

Barnichon and Mesters (2021) construct the Phillips multiplier as follows: consider
a variable x and its impulse response conditional on a shock (or a set of shocks) εt. Let
Ixj denote the impulse response j ≥ 0 periods after the shock was realized, and let I x̄h =
1
h

∑h
j=0 Ixj denote the average impulse response at horizon h. The Phillips multiplier is

then given by

Ph = I π̄h/I
ȳ
h, h = 0, 1, 2, ...,

where I π̄h and I ȳh represent the average impulse responses of inflation and output, re-
spectively. The authors show that the multiplier can be estimated from the cumulative
regression

h∑
j=0

πt+j|εt = Ph
h∑
j=0

yt+j|εt + et+h,

where πt+j|εt and yt+j|εt represent the variation in inflation and output projected by the
shock εt.

In their application, Barnichon and Mesters (2021) consider a monetary policy shock
as an instrument to obtain πt+j|εt and yt+j|εt . We instead condition on the demand and
supply shocks obtained in our baseline SVAR. The cumulative regression equation above
is estimated, first, using the unconditional data.12 Second, we use the data purged for
demand shocks. Finally we use the data purged for supply shocks. Estimates of the
multiplier are obtained separately for the two sub-samples. Note that we depart from the

12This essentially means that we estimate the Ph in the regression equation
∑h
j=0 πt+j = Ph

∑h
j=0 yt+j+

et+h.
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Table 2: Robustness exercises

γ̂u γ̂s γ̂d V D(y|s)
S1 S2 S1 S2 S1 S2 S1 S2

Baseline

(a) 0.26 0.12 0.56 0.53 -0.41 -0.09 0.40 0.61
Other price and activity measures

(b) 0.23 0.21 0.43 0.79 -0.40 0.12 0.28 0.78
(c) 0.14 0.11 0.39 0.50 -0.21 -0.04 0.47 0.71
(d) 0.39 0.14 0.81 0.63 -0.15 -0.04 0.51 0.70

Different sample periods

(e) -0.04 0.19 0.25 0.50 -0.36 -0.04 0.43 0.50
(f) 0.26 -0.01 0.57 0.64 -0.41 -0.14 0.41 0.69

Controlling for expectations

(g) 0.26 0.12 0.56 0.39 -0.80 0.06 0.19 0.45
(h) 0.25 0.12 0.50 0.66 -0.46 -0.05 0.19 0.54
(i) 0.44 0.19 0.81 1.02 -0.88 0.04 0.19 0.60

Additional variables and shocks

(j) 0.26 0.12 0.40 0.38 -0.62 -0.07
0.22 0.47

0.77* 0.92*
(k) 0.26 0.12 0.39 0.35 -0.63 -0.11

0.22 0.45
0.76* 0.78*

(l) 0.26 0.12 0.38 0.41 -0.61† -0.01†
0.37 0.58

0.73* 0.84* -0.43‡ -0.22‡

∗Conditional on monetary policy shocks.
†Conditional on technology shocks.
‡Conditional on labor supply shocks.

procedure in Barnichon and Mesters (2021) by using the SVAR model as a filter to obtain
projected data, rather than conditioning on the variation projected by instruments. Thus,
we estimate the regression equation above by OLS.

Figure 7 shows the results of this exercise. The unconditional multipliers (Panel A)
drop by more than 50% across all horizons, suggesting an empirical disconnect between
inflation and output also when we consider averages (or cumulated data) over time. The
conditional multipliers in panel B, instead, are much more similar across the two samples.
The multiplier conditional on demand shocks declines from 0.7 to 0.5 at horizon 8 in
the second sub-sample. Finally, the multiplier conditional on supply shocks increases
(becomes less negative) significantly in the second sample across all horizons, consistent
with a flattening of the demand curve.

22



5 ROBUSTNESS

In this section, we evaluate the robustness of our main empirical results from the bi-variate
SVAR model. We inspect alternative measures of inflation and economic activity, alter-
native sample periods, as well as extensions of the SVAR where additional variables and
shocks are included. Below we summarize the battery of robustness exercises that we dis-
cuss in the main text (in addition to the baseline model presented in the previous section),
while an analysis of the posterior distributions is relegated to Appendix C. Results from
the robustness exercises are presented in Table 2:

(a) Baseline as a reference

(b) Cyclically sensitive inflation as a measure of inflation (Stock and Watson (2020))

(c) Unemployment rate as a measure of real economic activity

(d) Unemployment gap from u∗ (trend) as a measure of real economic activity

(e) Sample split in 1998Q4 as in Jørgensen and Lansing (2023)

(f) Second sample ends in 2008Q4

(g) Baseline augmented with SPF expectations

(h) Baseline augmented with Michigan expectations

(i) CPI inflation and Michigan expectations

(j) Three-variable SVAR with the Federal Funds Rate

(k) Three-variable SVAR with the shadow rate as computed by Wu and Xia (2016)

(l) Four-variable SVAR with the shadow rate and the real wage

5.1 ALTERNATIVE INFLATION AND ACTIVITY MEASURES

In specification (b) we estimate the bivariate SVAR using the “cyclically sensitive” (CSI)
measure of inflation computed by Stock and Watson (2020). CSI inflation depends little
on tradable goods and on poorly measured sectors, but has a high weight on non-tradable
goods and services, as well as relatively well-measured sectors. Consistent with Stock
and Watson (2020) we find that, unconditionally, the statistical relationship between real
economic activity and CSI inflation remains relatively strong in the second sample. Given
that this sample presents a period with relatively little volatility, one could perhaps expect
to find stable slopes also in the conditional data. In contrast, we confirm a flattening of the
projected demand coefficient γ̂d and a larger role of supply shocks in the second part of the
sample, as in the baseline model. The combination of stability in the unconditional slope
and a flatter demand slope suggests a steepening in the estimated projection coefficient
γ̂s. In fact, this is what we find: the supply slope γ̂s increases by more than 80%, from
0.43 to 0.79. If anything, this indicates a steepening of the Phillips curve.

In specifications (c) and (d) we use the unemployment rate and the CBO measure of
the unemployment gap, respectively, as indicators of real economic activity.13 In both

13Inflation is negatively correlated with unemployment unconditionally and unemployment enters with a
negative sign in empirical specifications of the Phillips curve. Therefore, in order to facilitate the com-
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specifications, we find a flattening in the unconditional data, a clear flattening in response
to supply shocks and a larger role for supply shocks in the variance decomposition in the
second sample. The specification using the unemployment rate implies a steepening of
the estimated supply slope γ̂s, while some flattening (from 0.81 to 0.63) is found when
using the unemployment gap. All in all, these specifications are still consistent with the
policy story being the main source of the inflation disconnect.14

5.2 ALTERNATIVE SAMPLE PERIODS

In specification (e) we consider a sample split in 1998:Q4. We choose this date because,
as shown by Jørgensen and Lansing (2023), it results in a negative correlation between
the level of inflation and the output gap in the first sample, and a positive correlation in
the second sample. Using our data, the slope changes sign from -0.04 to 0.19. According
to theory, a more aggressive response of monetary policy against inflation can reduce the
magnitude of the unconditional slope but cannot explain on its own the change in sign
from negative to positive. This specification of the SVAR confirms a strong flattening in
the slope of the demand curve (from -0.36 to -0.04), as in our baseline model. At the
same time, we estimate a steepening of the supply curve from 0.25 to 0.5. Therefore, the
SVAR combines a steepening of supply with a flattening of demand to explain the shift in
sign in the unconditional slope. Notably, supply shocks explain a larger share of output
fluctuations in the second sample, in keeping with our baseline model.

In specification (f) we modify the length of the second sample by ending the estima-
tion when the zero lower bound starts binding at the end of 2008 (thus estimating the
model over the period 1995:Q1-2008:Q4). This exercise is important because the propa-
gation of shocks can change substantially when the zero lower bound is binding (although
unconventional monetary policies seem to limit the changes in propagation in practice,
according to the empirical evidence provided by Debortoli et al. (2020)). Therefore, we
want to check that our results are not driven by a period that has been very peculiar for
macroeconomic policy. Notably, our results are confirmed (if not reinforced) in speci-
fication (f): we find a tiny steepening in response to demand shocks, a clear flattening
in response to supply shocks, and an increased role for supply shocks in the variance
decomposition of output.

5.3 INCLUDING INFLATION EXPECTATIONS

In specifications (g), (h), and (i) we extend the SVAR to include data on inflation expec-
tations. This exercise can be seen as equivalent to Coibion and Gorodnichenko (2015)
with the crucial difference that estimates are conducted also on conditional data as fil-
tered by our SVAR model. In order to match the number of observables with the number
of identified shocks, we also include a third disturbance in the system. This shock moves
inflation and inflation expectations in opposite directions, see Panel (B) in Table 1. The

parison with our baseline model, we switch the sign of all slopes’ coefficients reported for specifications
(c) and (d) in Table 2.

14A few papers question the validity of the output gap or the unemployment rate as indicators of labor market
slack (cf. Ball and Mazumder (2019) and Faccini and Melosi (2023) among others). Alternative measures
of labor slack may emerge in the context of more complex models with long-term unemployment, or with
search on the job.
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third shock, which we do not assign any economic label, plays a minor role in the model
(inflation and inflation expectations are positively correlated in the data), perhaps reflect-
ing the fact that inflation expectations do not respond much to shocks, in particular in
low-inflation environments (cf. Coibion, Gorodnichenko, Kumar, and Pedemonte (2020)
and Coibion, Gorodnichenko, Knotek II, and Schoenle (2020)).

Specification (g) adds inflation expectations data from the Survey of Professional
Forecasters (SPF). We confirm a strong decline in the estimated slope conditional on
supply shocks (from -0.8 to 0.06, thus much larger than in the baseline model) and a
more important role for supply shocks in driving the output gap in the variance decom-
position. But we also estimate a non-trivial reduction in the slope conditional on demand
shocks, from 0.56 to 0.39. Since this result is consistent with a flattening of the Phillips
curve, the reader could think that our main result is (at least in part) weakened by the
inclusion of data on inflation expectations. However, such a conclusion is premature. In
fact, the expectations relevant for pricing decisions in the context of the Phillips curve
are firms’ inflation expectations, as discussed in detail in Coibion and Gorodnichenko
(2015). Unfortunately, there is no quantitative measure of firms’ inflation expectations
available in the United States for a sufficiently long sample. Notably, however, Coibion
and Gorodnichenko (2015) argue that household inflation expectations, as measured by
the Michigan Survey of Consumers, are a better proxy for firm expectations than SPF
expectations and provide supporting empirical evidence based on survey data from New
Zealand. Therefore, in specification (h) we include data on inflation expectations from the
Michigan survey in our baseline model. All results are now stronger than in our baseline
specification. In addition, we now find an increase in the supply coefficient γ̂s, from 0.5 to
0.66, thus hinting at a steepening of the Phillips curve. One may criticize this experiment
because expectations in the Michigan survey are about CPI inflation and not about the
GDP deflator. To address this concern, we use data on CPI inflation (together with the
output gap and the Michigan survey measure of inflation expectations) in specification (i).
The results are again stronger than in the baseline model. The estimate for γ̂d (from -0.88
to 0.04) indicates a clear flattening of the demand curve, while γ̂s signals a steepening of
the Phillips curve. Consequently, supply shocks become once again the main drivers of
the output gap. Conditional on the Coibion and Gorodnichenko (2015) arguments and ev-
idence in favor of the use of the Michigan survey as a better proxy for firms’ expectations,
we conclude that our results are reinforced when including inflation expectations in the
SVAR. One potential explanation is related to the fact that households adjust their infla-
tion forecasts more strongly in response to oil price changes than professional forecasters,
thus favoring a more accurate identification of supply shocks.

5.4 EXTENSIONS WITH ADDITIONAL SHOCKS

In specification (j) we include the interest rate in the SVAR. Specification (k) includes the
shadow rate as computed by Wu and Xia (2016). The latter is tailored to describe interest
rates when the nominal policy rate is stuck at the lower bound, a common situation in the
later parts of the second sample. These additional variables allow us to identify a monetary
policy shock, a second demand shifter which effectively provides us with an additional
cross-check of our simple arithmetics. In a way, we are decomposing the baseline demand
shock into two components. We assume that the monetary policy shock causes a negative
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impact co-movement between the interest rate and the inflation rate, see Panel (C) in Table
1. Interestingly, there is no sign of a decline in γ̂s conditional on monetary policy shocks
(if anything, we find some steepening). Neither is there a decline when we look at the
purified, non-monetary demand shock. Instead, we have a clear flattening of the supply
slope, from −0.62 to −0.07 in specification (j) and from −0.63 to −0.11 in specification
(k). Finally, the role of supply shocks in the variance decomposition of output doubles in
both specifications.

Finally, in specification (l) we add a fourth variable (real wages) to the system. Having
a larger system also helps to avoid deformation problems, as discussed recently by Canova
and Ferroni (2022). The idea is to identify an additional supply-side factor by disentan-
gling labor supply shocks from technology shocks. Panel (D) in Table 1 presents the
identification scheme. The slopes conditional on the two demand shocks are almost un-
changed over the two samples while we observe a clear flattening in response to both sup-
ply shocks, although the change is more pronounced conditional on technology shocks.
The share of variance explained jointly by the two supply shocks clearly increases over
time.15

6 TAKING STOCK

In this section, we review inflation and output dynamics over the last 20 years through the
lenses of our empirical results. Finally, we compare our results with selected literature
which is particularly related to our paper.

6.1 US INFLATION AND OUTPUT IN THE 21ST CENTURY

Our main result is that the demand curve has flattened over time. A flatter demand curve
implies that supply shocks have larger effects on the output gap (relatively to the first
sample). Not surprisingly given our previous results on the variance decomposition, this
is what we observe when we plot the historical decomposition for the output gap based
on our model in Figure 8. In contrast, demand shocks are the main drivers of inflation, in
keeping with the idea that the Phillips curve is alive and well. Therefore, a mild dichotomy
emerges with inflation being mainly driven by demand shocks and the output gap being
mainly driven by supply shocks over the last 20 years.16

Some episodes are quite intuitive: for example, our model describes the boom in the
second half of the 90s as driven by supply shocks while the pre-Great Recession boom is
driven by demand shocks. Perhaps more intriguingly, the model sees the Great Recession

15A useful complement to our sensitivity analysis is proposed by our discussant von Schweinitz (2022) who
applied our simple arithmetics using the code provided by Baumeister and Hamilton (2018) to estimate
a sign-restricted SVAR model driven by demand, supply and monetary policy shocks. When using their
data and their priors, von Schweinitz (2022) finds a steepening conditional on demand shocks and a clear
flattening in response to supply shocks. He also finds a flattening in response to monetary shocks which,
however, have a minor explanatory power in the model.

16Angeletos, Collard, and Dellas (2020) find full dichotomy with unemployment (or real economic activity)
being driven by a so-called main business cycle shock and inflation by its own shock. Ascari and Fosso
(2024) and Bianchi, Nicolò, and Song (2023) extend the analysis in the context of a trend-cycle VAR and
find that the main business cycle shock drives also a substantial share of inflation fluctuations at business
cycle frequencies.
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as driven by a combination of negative supply shocks and negative demand shocks. This
does not mean that the demand impulse was small but rather that its propagation was less
dramatic than one may think. Once again, the reason is due to a relatively flat demand
curve, perhaps reflecting the strong anti-deflationary response of the Federal Reserve at
that time. Debortoli et al. (2020) provide empirical evidence in favor of such a view.

Since the fall in output was massive during the Great Recession, the model needs an
important role for supply shocks to fit the data during that period. What could these supply
shocks be? After all, we are used to the narrative that the Great Recession was predom-
inantly driven by a large and negative demand shock. One possibility is that oil shocks
further reinforced the fall in output and mitigated the decline in inflation. Coibion and
Gorodnichenko (2015) document the importance of oil shocks between 2009 and 2011 to
explain the rise in consumers’ inflation expectations and the absence of disinflation during
the Great Recession. A second possibility is that the financial impulse behind the Great
Recession (or at least part of it) propagated more like a supply shock than like a demand
shock. Gilchrist et al. (2017) provide a theory (and supportive empirical evidence) of why
financially constrained firms may have been forced to increase prices during the Great
Recession (see also Manea (2020) for complementary theory and empirical evidence). A
third possibility is that supply shocks capture in part the increase in wage mark-ups due
to downward nominal wage rigidities, as discussed in Galı́, Smets, and Wouters (2012).

6.2 OUR CONTRIBUTION IN PERSPECTIVE

We now discuss our results in connection with a few crucial papers in the literature that
have questioned, as we do, the narrative of the Phillips curve flattening.

A natural starting point is the work by McLeay and Tenreyro (2020), who make the
case that the Phillips curve can be alive and well even if inflation does not co-move with
the output gap in the data. The authors show that optimal monetary policy neutralizes
all variation except that due to cost-push shocks (see also Seneca (2018)). In such a sce-
nario, a negative unconditional regression slope emerges automatically. Our identification
scheme, in contrast, assumes that monetary policy is represented by a Taylor rule that is
unable to mimic optimal monetary policy perfectly. Our choice is motivated by the fact
that, if optimal monetary policy (in the form of a targeting rule) was in place, we should
observe a negative unconditional slope in the data. Panel A in Figure 5 shows that this is
not the case.

Barnichon and Mesters (2020) stress the importance of using demand shocks (mon-
etary policy shocks in their case) as instruments to trace the slope of the Phillips curve.
We follow their prescription using a more general demand shock, although we consider
also monetary policy shocks in isolation in our sensitivity analysis. Our results are fully
compatible with their finding on the slope of the Phillips curve. Importantly, we apply the
Barnichon and Mesters (2020) recommendation also in using supply shocks to trace the
slope of the demand curve. Our focus on the joint identification of both shocks allows us
to exploit fully our simple arithmetics and derive our main results.

Hazell et al. (2022) and Jørgensen and Lansing (2023) find that the anchoring of in-
flation expectations is crucial to explain the inflation puzzle using regional and aggregate
data respectively. Both papers find that the estimated slope coefficient is stable over time
although its magnitude depends on whether the estimation is performed on regional or
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Figure 8: A historical shock decomposition of data
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Notes: Historical decompositions of inflation and output gap are presented in deviation from
initial conditions.

aggregate data. In our framework, the anchoring of inflation expectations is a by-product
of a more aggressive monetary policy response to inflation. Our focus on supply shocks is
crucial to providing additional validation of the result obtained in these previous papers.

7 CONCLUSION

In this paper we have reconsidered the puzzling stability of inflation in spite of large fluc-
tuations in real economic activity over the last couple of decades. Using a combination of
New Keynesian theory and estimated SVAR models, we argue that controlling for the ef-
fects of all supply shocks (and not only for cost-push shocks) is of paramount importance
to evaluate alternative explanations of the inflation puzzle. While we reconfirm that the
regression slope linking inflation to the output gap has declined unconditionally, we find
that slopes based on data properly purged for supply shocks have been relatively stable.
In contrast, we find substantial support for a flattening of the demand curve recovered
by inspecting the propagation of supply shocks over adjacent sample periods. One natu-
ral explanation for such a flattening is a more aggressive response of monetary policy to
inflation movements in the second part of the sample.

Arguably, one benefit of our paper is its simplicity and the clear mapping between the-
ory and empirics. Nonetheless, it would be interesting to relax some assumptions behind
our analysis. Perhaps, the most interesting avenue would be to include non-linearities in
our set-up. In fact, while we rely currently on a linearized New Keynesian model and on a
linear SVAR, it is conceivable that both the supply curve and the demand curve (perhaps
in connection with the zero lower bound on interest rates) may feature non-linearities
(cf. Harding, Lindé, and Trabandt (2022) and Harding, Lindé, and Trabandt (2023) for
non-linear analysis of the Phillips curve). Disentangling our simple arithmetics from gen-
uine non-linearities in the transmission mechanism of shocks seems of high importance
for future research. Unfortunately, the literature has not reached a consensus on how to
integrate sign restrictions into non-linear SVAR models, thus making the extension to a
non-linear setting far from straightforward.
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APPENDIX

A THE ROLE OF SHOCK PERSISTENCE

Here we discuss the case where shocks to demand and supply are persistent. Persistence
implies pass-through from current innovations to agents’ forward-looking expectations.
In turn, these expectations shift the structural Phillips curve and the aggregate demand
curve, summarized by equations (7) and (8) in the main text. Importantly, these shifts
come on top of the direct effects from current shocks. The question, then, is how shock
persistence and expectations influence our simple arithmetics, as well as what economet-
ric biases we might introduce by ignoring expectations when they actually matter.

To fix ideas, consider the simple model discussed in the main text, summarized by
equations (7) and (8). However, suppose that instead of being i.i.d., the structural shocks
follow separate AR(1) processes:

dt = ρddt−1 + εd,t εd,t ∼ N
(
0, σ2

ε,d

)
st = ρsst−1 + εs,t εs,t ∼ N

(
0, σ2

ε,s

)
For simplicity, we assume that demand (supply) shocks share a common demand-specific
(supply-specific) autoregressive parameter ρd (ρs). One can guess and verify the following
closed-form solutions for output and inflation:

yt =
1− βρd

Ψd

dt −
(ϕπ − ρs)

Ψs

st

πt =
κ

Ψd

dt +
σ (1− ρs) + ϕy

Ψs

st

The two auxiliary parameters Ψd and Ψs are decreasing in ρd and ρs, respectively:

Ψd = [σ (1− ρd) + ϕy] (1− βρd) + κ (ϕπ − ρd) > 0

Ψs = [σ (1− ρs) + ϕy] (1− βρs) + κ (ϕπ − ρs) > 0

Importantly, ρd > 0 and ρs > 0 give rise to a non-zero correlation between current shocks
and future realizations of the output gap and inflation, implying an explicit expectations
channel when shocks are realized. The quantitative relevance of this channel depends
both on shocks’ persistence and on the policy coefficients ϕπ and ϕy. Note, also, that the
special case with ρd = ρs = 0 brings us back to the expressions stated in the main text.

Next, we state the closed-form expressions for the OLS estimator when shocks are
persistent. These objects will depend on whether or not the econometrician accounts
properly for the role of expectations. Let us briefly discuss both situations.

A.1 OLS ESTIMATES IF WE IGNORE THE ROLE OF EXPECTATIONS

Suppose that the econometrician ignores expectations and estimate the simple regression
equation from the main text:

πt = γyt + εt
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Then γ ≡ cov(πt,yt)
var(yt)

and we obtain the following closed-form expressions for the estimated
projection coefficients γ̂u, γ̂s and γ̂d:

γ̂u =

κ(1−βρd)
Ψ2

d
− (ϕπ−ρs)[σ(1−ρs)+ϕy ]

Ψ2
s

σ2
s

σ2
d(

1−βρd
Ψd

)2

+
(
ϕπ−ρs
Ψs

)2
σ2
s

σ2
d

(A.1)

γ̂s =
κ

1− βρd
(A.2)

γ̂d = −σ (1− ρs) + ϕy
ϕπ − ρs

(A.3)

Here we have introduced the normalizations σ2
d =

σ2
ε,d

1−ρ2d
and σ2

s =
σ2
ε,s

1−ρ2s
. A few remarks

are in place: first, the projection coefficient based on unconditional data, γ̂u, remains a
function of both the structural Phillips curve slope, the stance of monetary policy, and the
volatility of supply disturbances relative to demand disturbances. Thus, just as in the main
text, an observed decline in γ̂u over time does not necessarily imply that the structural
Phillips curve has flattened and we need more information to identify underlying causes.

Second, γ̂s is increasing in κ while γ̂d is independent of κ. At the same time, γ̂d is
increasing in ϕπ (i.e. becoming less negative) while γ̂s is independent of ϕπ. Importantly,
these observations justify the simple arithmetics presented in the main text: (i) a decline
in both γ̂u and γ̂s, combined with a stable estimate of γ̂d, is what we expect to see if the
structural Phillips becomes flatter. (ii) a decline in γ̂u and a flattening of γ̂d (towards less
negative values), coupled with a stable estimate of γ̂s, would instead point to a flattening
of the demand curve. (iii) if γ̂u declines while γ̂s and γ̂d remain relatively stable, then it
seems likely that supply shocks have become more volatile relative to demand shocks.

Finally we note that γ̂s, if interpreted as a structural Phillips curve slope, is biased
upwards relative to κ when shocks are persistent. This bias is strictly increasing in ρd.
Intuitively, κ captures the elasticity of πt with respect to yt keeping expectations fixed.
But expectations are not fixed when ρd > 0. If the econometrician ignores expectations
and attribute the entire rise in πt directly to the contemporaneous rise in yt, then the
included regressor yt will be positively correlated with the error term εt. As a result one
obtains a too high estimate of κ. Put differently, the estimates of γ̂s presented in the main
text are only proportional to κ and should, if anything, be interpreted as potential upper
limits of the structural Phillips curve slope.

A.2 OLS ESTIMATES ACCOUNTING FOR EXPECTATIONS

Finally we consider a case where expectations are taken explicitly into account. The
regression equation which is estimated follows below:

πt = βπet+1 + γyt + εt

The variable πet+1 represents inflation expectations. An econometrician may obtain varia-
tion in inflation expectations from instruments or observe them directly. Given our focus
on the simple arithmetics associated with conditional data, we will assume that expecta-
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tions are measured properly.17 Now the OLS estimator is given by γ ≡ cov(πt−βπe
t+1,yt)

var(yt)
,

and the three datasets considered result in the following closed-form estimates of projec-
tion slopes:

γ̂u =
κ
(

1−βρd
Ψd

)2

− (ϕπ−ρs)[σ(1−ρs)+ϕy ](1−βρs)
Ψ2

s

σ2
s

σ2
d(

1−βρd
Ψd

)2

+
(
ϕπ−ρs
Ψs

)2
σ2
s

σ2
d

(A.4)

γ̂s = κ (A.5)

γ̂d = − [σ (1− ρs) + ϕy] (1− βρs)

ϕπ − ρs
(A.6)

Our simple arithmetics derived earlier remain valid even in this case: (i) the slope story
is associated with a decline in γ̂u and γ̂s, but not in γ̂d. (ii) the policy story implies a
decline in γ̂u and a rise (towards less negative values) in γ̂d while γ̂s remains stable. (iii)
the shocks story implies a decline in γ̂u, combined with unchanged γ̂s and γ̂d. Finally,
given that expectations are dealt with properly we also obtain γ̂s as an unbiased estimate
of the structural Phillips curve slope κ when data are purged for supply-side shocks.

B PUBLIC SECTOR DEMAND AND JOINT SHIFTS IN

DEMAND AND SUPPLY CURVES

This exercise illustrates a situation in which demand and supply curves shift simultane-
ously in response to the same shock. This situation may arise if the output gap seizes to be
proportional to marginal costs, an assumption we used in the main text. The purpose is to
highlight implications for our simple arithmetics, and especially what kind of biases one
might expect. To this end we introduce fiscal policy, although one can think of many other
extensions with similar implications, e.g. sticky wages, the use of intermediate inputs in
production, etc.

We model a public sector in the simplest way possible: suppose that the public sector
accounts for a fraction 1−α of the aggregate economy in steady state. Market clearing in
the goods market is given by yt = αct+ (1− α) gt, where ct represents private consump-
tion and gt represents public sector consumption. For simplicity, we abstract from the
potential role of public debt dynamics and suppose that public demand follows a simple
rule; gt = τyt + εg,t. The parameter τ determines the cyclical stance of fiscal policy. We
refer to the policy rule as counter-cyclical (pro-cyclical) if τ < 1 (> 1), since this implies
that the public sector share gt − yt is higher (lower) in recessions than in expansions. εg,t
is a discretionary fiscal policy shock. Combining the fiscal rule with the market clearing
condition just stated we note that

ct = ξτyt −
1− α

α
εg,t,

where ξτ = 1 + (1−α)(1−τ)
α

. Our setup in the main text, ct = yt, emerges as a special case
when α = 1. The rest of the model is as before (see equations (1)-(6) in the main text).
17This means that πet+1 = Etπt+1 when expectations are rational and in the absence of further information

frictions.
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Following the same steps as earlier we once again arrive at an upward-sloping supply
curve in the (yt, πt)-space, as well as a downward-sloping demand curve:

πt = βEtπt+1 + κτyt + st − λxg,t (B.1)

yt =
1

στ + ϕy
(στEtyt+1 − ϕππt + Etπt+1 + dt + xg,t) (B.2)

The auxiliary parameters στ and κτ are given by στ = σξτ and κτ = λ (στ + φ) respec-
tively, while xg,t = σ 1−α

α
εg,t captures the pass-through from fiscal shocks. dt and st are

defined as in the main text (dt = ut −mt and st = zt + λψt − λ (1 + φ) at).
The introduction of a public sector changes the model in two ways: first, the cyclical-

ity of fiscal policy affects both demand and supply curve slopes. A more countercyclical
policy rule raises στ (and, therefore, κτ ), implying a flatter demand curve and a steeper
supply curve. Second, both curves shift out in response to an expansionary fiscal shock:
the aggregate demand curve shifts outwards because increased public demand, ceteris
paribus, stimulates both output and inflation. But increased public demand also operates
through income effects on households’ labor supply, causing an outward shift in the ag-
gregate supply curve as well. This further stimulates output but reduces inflation. The
net effect on inflation is, therefore, ambiguous. Moreover, the joint shift in both curves
presents an identification challenge for the econometrician trying to identify demand and
supply curve slopes in the data.

To better understand this identification challenge, we bring back the assumption that
all shocks are white noise and derive analytical solutions for output and inflation:

yt =
1

στ + ϕy + κτϕπ
[dt − ϕπst + (1 + ϕπλ)xg,t]

πt =
1

στ + ϕy + κτϕπ

[
κτdt + (στ + ϕy) st +

(
1− στ + ϕy

στ + φ

)
κτxg,t

]
An exogenous public sector expansion is inflationary if φ > ϕy, i.e. if income effects on
labor supply are not too large. We suppose that this is the most relevant case empirically.

One can still derive closed-form expression for the OLS estimator γ ≡ cov(πt,yt)
var(yt)

, asso-
ciated with the simple regression specification πt = γyt + εt. The projection coefficient
based on unconditional data admits the following closed-form solution:

γ̂u =
κτσ

2
d − ϕπ (στ + ϕy)σ

2
s + (1 + ϕπλ)

(
1− στ+ϕy

στ+φ

)
κτσ

2
g

σ2
d + ϕ2

πσ
2
s + (1 + ϕπλ)

2 σ2
g

(B.3)

The volatility of fiscal shocks is captured by σ2
g =

(
σ 1−α

α

)2
σ2
εg while σ2

s and σ2
d are

defined in the main text (σ2
d = σ2

m+σ
2
u and σ2

s = σ2
z+λ

2σ2
ψ+λ

2 (1 + φ)2 σ2
a respectively).

It is clear that fiscal shocks further limit the scope for γ̂u to represent an accurate es-
timate of κτ . Moreover, the implications for an econometrician hoping to exploit con-
ditional variation depend critically on the correlation structure induced by εg,t. Here
we suppose that fiscal shocks generate co-movement between yt and πt (as implied by
φ > ϕy) so that our econometrician, who follows a sign restriction approach, treats them
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as conventional demand shifters. The estimated projection coefficient conditional on sup-
ply shocks only is naturally unchanged in this case:

γ̂d = −στ + ϕy
ϕπ

(B.4)

Thus, stricter inflation targeting still flattens the demand curve while changes in the
Phillips curve slope play no role for the slope of demand.

Turning to the supply curve, i.e. the estimated projection coefficient conditional on
perceived demand shocks, we define γ̂s̃ to highlight the econometrician’s inclusion of
fiscal shocks in the vector of demand disturbances. The closed-form solution when fiscal
shocks are present can be derived as follows:

γ̂s̃ =

1− (1 + ϕπλ)
(
ϕπλ+ στ+ϕy

στ+φ

)
σ2
g

σ2
d

1 + (1 + ϕπλ)
2 σ2

g

σ2
d

κτ < κτ = γ̂s (B.5)

It is clear that γ̂s̃ (i) tends to be biased downward relative to the Phillips curve slope κτ ,
and (ii) may change because of shifts in ϕπ as well. In fact, suppose that we condition on
fiscal shocks only:

γ̂g =
1− στ+ϕy

στ+φ

1 + ϕπλ
κτ (B.6)

Both a flatter Phillips curve and stricter inflation targeting lead to a decline in γ̂g. It is only
when labor supply becomes infinitely inelastic (φ goes to infinity), and at the same time
the Phillips curve becomes infinitely flat (λ goes to zero), that γ̂g approaches κτ . This
highlights the danger of using fiscal shocks (or shocks with similar nature) as instruments
when trying to estimate the structural Phillips curve slope.

Nevertheless, while the fiscal shock at least in principle may represent a potential
threat to our identification strategy, in practice we do not believe this to be a quantitatively
relevant issue. First, it seems implausible that fiscal policy shocks are responsible for a
dominant share of the business cycle volatility in output and inflation. Second, recall that
in section 4 we find essentially no decline in γ̂s, but a substantial flattening of γ̂d, when
inspecting actual data. Given the discussion here, these findings seem consistent with
stricter inflation targeting even if fiscal policy shocks would turn out to be quantitatively
important. A flattening of the Phillips curve, instead, should have led to a flattening of γ̂s
combined with a stable γ̂d, i.e. the opposite of what we find in the data.

C INSPECTING THE POSTERIOR DISTRIBUTION

Following common practice, all of the results so far rely on one historical decomposition
based on the median contribution of each shock at each quarter in the SVAR model. As
an additional robustness exercise, in this appendix we instead evaluate the conditional
regression slopes across a wide range of the posterior distribution, thus taking into ac-
count the model uncertainty which is an inherent feature of set-identified models. Recall
that the Bayesian approach based on Arias et al. (2018) provides us with 10, 000 different
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Table 3: Robustness to posterior credibility sets

γ̂u γ̂s γ̂d
S1 S2 S1 S2 S1 S2

(a) 0.26 0.12
0.61 0.51 −0.59 −0.14

[0.29, 0.89] [0.15, 0.83] [−1.32, 0.13] [−0.34, 0.09]

(b) 0.23 0.21
0.41 0.52 −0.54 0.12

[0.20, 0.62] [0.24, 0.81] [−1.26, 0.08] [0.04, 0.23]

(c) 0.14 0.11
0.18 0.43 −0.35 −0.07

[−0.51, 0.88] [0.13, 0.69] [−1.12, 0.42] [−0.21, 0.12]

(d) 0.39 0.14
0.59 0.54 −0.31 −0.09

[−0.20, 1.28] [0.18, 0.87] [−1.11, 0.54] [−0.26, 0.15]

(e) −0.04 0.19
0.12 0.54 −0.51 −0.07

[−0.16, 0.40] [0.24, 0.76] [−1.08, 0.06] [−0.29, 0.17]

(f) 0.26 −0.01
0.62 0.33 −0.59 −0.11

[0.29, 0.91] [0.02, 0.62] [−1.29, 0.12] [−0.29, 0.10]

(g) 0.26 0.12
0.49 0.40 −0.56 0.02

[0.21, 0.77] [0.11, 0.66] [−1.17, 0.01] [−0.14, 0.19]

(h) 0.25 0.12
0.43 0.49 −0.14 −0.07

[0.24, 0.61] [0.15, 0.79] [−0.60, 0.34] [−0.24, 0.10]

(i) 0.44 0.19
0.90 0.73 −0.28 0.03

[0.41, 1.35] [0.19, 1.25] [−0.86, 0.27] [−0.13, 0.22]

(j) 0.26 0.12
0.34 0.34 −0.42 −0.10

[0.12, 0.56] [0.12, 0.52] [−1.01, 0.14] [−0.27, 0.09]

(k) 0.26 0.12
0.33 0.34 −0.41 −0.12

[0.11, 0.56] [0.11, 0.54] [−0.99, 0.14] [−0.32, 0.09]

posterior models for each of the two samples under consideration. All these posterior
models are consistent with the sign restrictions presented earlier, yet all of them give rise
to a unique decomposition of the raw unconditional data. To further investigate this, we
use the 10, 000 sample-specific, conditional datasets to compute 10, 000 sample-specific
estimates of γ̂s and γ̂d. This is done both for the baseline specification and the robust-
ness specifications reported in Table 2. The results of this exercise are summarized in
Table 3, where we report the posterior mean together with 68% bands for the credible set
(in brackets). Unconditional slopes are also provided in order to facilitate comparison of
the results.

A couple of observations stand out: first, regarding γ̂s, we confirm the general picture
established earlier. Projected supply slopes (i.e. conditional on demand shocks) do not
tend to decrease, at least not to a large extent. The 68% credible set for γ̂s in sample 2
spans its posterior mean in sample 1 in all specifications except (e) and (f). Specification
(e) uses the same sample split as in Jørgensen and Lansing (2023), implying in fact a
steepening of the slope–both unconditionally and conditional on demand. Specification
(f), instead, is where we discard observations after 2008:Q4. This is the only significant
exception pointing to a flattening of the Phillips curve. Second, regarding γ̂d, we find
a major flattening (i.e. a less negative value) of the slope conditional on supply in all
specifications when considering the posterior mean across the 10, 000 models. Moreover,
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the 68% credible set for γ̂d in sample 2 does not span the posterior mean in sample 1 in any
of the specifications except (h), where we add inflation expectations from the Michigan
survey to the analysis. Finally, it seems that the biggest change in the posterior distribution
of γ̂d across samples is located in the left tail of the distribution. The 16% lower bound
in the baseline model, for example, increases from −1.32 to −0.34, substantially more
than the 84% upper bound. In any case, we conclude that the results presented in Table 3
support the picture drawn earlier: evidence of a flatter supply curve is weak in our data,
while there seems to be a major flattening of the demand curve.

While our results survive broadly after the inspection of the posterior distribution of
admissible models, it is fair to admit that model uncertainty (summarized by the credible
intervals) is large. This is an inherent feature of SVAR models identified with sign re-
strictions, and the price to pay when using only a few identification assumptions. These
credible intervals could be shrunk significantly by imposing the sign restrictions over a
longer horizon (and not only on impact) and by imposing a few narrative restrictions (as
in Antolı́n-Dı́az and Rubio-Ramı́rez (2018)) in addition to the impact sign restrictions. In
the context of the simplicity that characterizes both the theoretical and empirical part of
this paper, our goal is to show that some solid results can be obtained even when imposing
just a couple of impact sign restrictions (cf. Canova and Paustian (2011)) while admitting
that these results could be refined by imposing more structure on the empirical model.
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