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MAFFEI-FACCIOLI¶ AND PÅL ULVEDAL||
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1 INTRODUCTION

MOTIVATION After a long period of low and stable inflation, the outlook has suddenly
changed in the aftermath of the COVID pandemic, and most countries have seen infla-
tion rates reach unprecedented levels since the late 1970s. In the US, the GDP deflator
started rising at the end of 2020 and peaked at 7.7 percent in 2022:Q2. In the euro area,
inflation was in negative territory by the end of 2020 before rising sharply in 2021 and
2022, peaking around 10 percent on an annual basis. In some European countries, such
as the Netherlands or Estonia, the annual inflation rate exceeded 15 percent in 2022. Ini-
tially, supply disruptions associated with the pandemic-induced sectoral reallocation of
economic activity were thought to cause the rise in inflation. However, the emergence
of a historically tight labor market (as measured, e.g., by the vacancy-to-unemployment
ratio) and the fast recovery of the employment-to-population ratio, as the result of the
massive monetary and fiscal stimulus implemented in many countries, shifted attention
towards demand factors. Needless to say, disentangling demand and supply factors is
crucial, since a proper policy response depends on the nature of the impulses driving the
inflation surge.

A natural way to separate demand and supply shocks is to rely on flexible time-series
models such as Vector Autoregressions (VAR). These models are routinely used to under-
stand key characteristics of the data and to assess the state of the macroeconomic environ-
ment, both retrospectively and prospectively (see Del Negro and Schorfheide (2011),Koop
and Korobilis (2013), Carriero et al. (2015), Chan (2022), and citetcrump2021large among
others). VAR models decompose the observable data into a deterministic and a stochastic
component. The deterministic component is regulated by the VAR parameters and the
initial values of the dynamic system. The stochastic component, in contrast, depends on
the discounted sum of innovations hitting the system. Equipped with some identification
restrictions, one can map the reduced form innovations into various structural shocks,
with the most fundamental partition in our case being between shocks to demand and
supply, respectively. The resulting structural VAR (SVAR) model can be used to decom-
pose observed data changes over time into underlying economic drivers. In particular,
such a historical shock decomposition can effectively quantify the relative importance of
demand and supply factors during the recent inflation surge.

CONTRIBUTION This paper highlights an important flaw when computing historical
shock decompositions. As a motivating example, suppose that a researcher wishes to
quantify the role of demand and supply disturbances for inflation during the post-COVID
period. She can estimate her preferred VAR model, split the observed inflation into its
deterministic and stochastic components and, once certain identification restrictions are
used, evaluate the role of supply and demand factors. Our key contribution is to show that
there is considerable uncertainty in the splitting exercise. We establish that conditional
likelihood-based estimation procedures deliver very dispersed estimates of the determin-
istic component, and even small perturbations of the estimated parameters of the VAR
may result in large changes in the deterministic component, despite having only a small
impact on the likelihood. Putting the same concept differently, the deterministic compo-
nent of the model is poorly identified and poorly estimated. Because the deterministic and
stochastic components sum to the observable data, a poorly estimated deterministic com-
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ponent translates into very imprecise estimates of the shock path decomposition. To the
best of our knowledge, this “excess” dispersion has been largely ignored in the literature.
In fact, it is typical to compute historical shock decompositions conditioning on a point
estimate of the deterministic component.

In contrast, most empirical SVAR applications report the uncertainty associated with
estimated impulse response functions (IRFs). For presentation purposes, it is common to
pay attention to a measure of central tendency of the IRFs. For example, Fry and Pagan
(2011) select the draw closest to the pointwise median IRF, while Inoue and Kilian (2013)
choose the most likely admissible draw within the set satisfying the imposed restrictions.
We show that parameter draws exhibiting “good” impulse responses—meaning responses
close to the pointwise median or to the most likely draw—may feature extreme determin-
istic components and thus provide unreasonable historical decompositions. Thus, there is
no guarantee that “good” impulse responses are associated with “good” historical shock
decompositions. In this sense, history narratives may become whimsical.

We highlight that the excess dispersion problem is related to, but distinct from the
overfitting problem discussed in Sims (1996), Sims (2000) and Giannone et al. (2019)
and shock decompositions may display excess dispersion even when overfitting is absent.
Excess dispersion may occur in VARs featuring a different number of variables and es-
timated with different sample sizes. It appears both with relatively stable data, such as
in our baseline sample (1983-2022) for the United States, and in longer samples subject
to time series instabilities (e.g. 1949-2022). Importantly, it arises when estimating the
reduced-form parameters. Thus, it is independent of the identification scheme used to
transform reduced-form innovations into structural shocks.

After documenting how imprecise an estimated shock decomposition can be using
a VAR with US data as illustrative example, and inspecting the data features that make
the problem more serious, we turn our attention to potential solutions. We show that al-
ternative prior assumptions often used in empirical work to reduce estimated parameter
uncertainty (such as a Normal-Inverse Wishart or a Minnesota-like prior), are unable to
solve the excess dispersion problem. Our approach considers a specific prior distribution,
the single-unit-root prior, also known as the “dummy initial observations” prior, intro-
duced by Sims (1993). Such a prior effectively shrinks the dispersion of the deterministic
components by linking the constant of the VAR to some a-priori steady state measure. The
tightness of the prior can be calibrated, if one wishes to do so. We treat it as a hyperparam-
eter and estimate its posterior distribution, using the approach of Giannone et al. (2015).
The modal value we obtain is generally small. As a result, a SVAR estimated with the
single-unit-root prior features almost no uncertainty around the deterministic component
and draws producing similar impulse response functions also produce similar historical
decompositions. While the single unit root prior has been used in a few applications, see
e.g. Sims and Zha (1998) and Antolin-Diaz et al. (2021), its ability to shrink the uncer-
tainty around the estimated deterministic component and to improve historical narratives
has not been highlighted before.

RESULTS We estimate a conventional SVAR endowed with sign restrictions to quan-
tify the drivers of the recent inflation surge. When a diffuse prior is employed, there
is substantial uncertainty around estimates of the deterministic component of inflation.
In addition, the three draws delivering impulse responses (IRF) closest to the pointwise

3



median response imply vastly different historical decompositions, despite exhibiting al-
most identical impulse dynamics: one draw implies a dominant role for supply shocks;
the next a dominant role for demand shocks; the third suggests that the two shocks are
equally important.

When the single-unit-root prior is used, uncertainty around the deterministic com-
ponent shrinks, and draws implying similar impulse responses are also associated with
similar historical decompositions of inflation. In this case, demand shocks are prevalent
over the sample and, in particular, over the last few years. In the US they account for
more than 50 percent of inflation fluctuations in 2021 and almost 80 percent in 2022. The
dominant role of demand factors in the post-COVID recovery is confirmed when we esti-
mate a SVAR with a single-unit-root prior using euro area and four small open economies
(Norway, Sweden, Canada and Australia) data. For example, demand shocks account for
more than 50 percent of inflation fluctuations in 2022 in the euro area. However, while
supply shocks play a limited role in the US since the middle of 2022, they still matter in
the euro area until the middle of 2023 as the region is substantially more exposed to the
Ukraine war, an important supply shock. In the other countries, the outcomes are surpris-
ingly similar to the US: supply shocks drive inflation in 2020 but already in 2021 demand
forces become prevalent.

For researchers who are reluctant to use our prior restrictions for inferential purposes,
we offer two alternative pragmatic solutions, both of which make historical decomposi-
tions narrative more robust. The first is to demean the data prior to estimation. Such an
approach can reduce the excess dispersion problem since poor estimates of the VAR con-
stant contribute to making excess dispersion important. By reducing the dispersion of the
deterministic component, one has the side benefit of reducing the uncertainty in the narra-
tive, for any given historical decomposition. The second alternative treats the uncertainty
in estimated VAR parameters symmetrically. That is, one draws from the (asymptotic
or posterior) distribution of all model parameters, constructs the distribution of the his-
torical decompositions and takes the pointwise median contribution of each shock, as in
Bergholt et al. (2025). Such an approach does not reduce the excess dispersion of the
deterministic component but takes it into account when computing a summary historical
decomposition measure. It turns out that the alternative solutions we propose deliver a
historical decomposition narrative for US inflation which is similar to the one obtained
with the single-unit-root prior.

RELATED LITERATURE Our work contributes to three separate strands of the literature.
First, we complement existing work by warning about an uncritical use of VARs for in-
ference and for stylized fact collection, see e.g. Canova and Ferroni (2022) for a recent
contribution. We point out that a realistic account of the uncertainty surrounding the de-
terministic component is crucial to produce credible historical decomposition narratives.

Second, we highlight an issue which, to the best of our knowledge, has not been
discussed in the literature. One problem often touched upon is that the deterministic
component tends to explain an implausibly large share of the low frequency variation of
the data (the so-called overfitting problem), yielding implausible out-of-sample forecasts,
see Sims (1996) and Sims (2000). Giannone et al. (2019) argue that this excessive ex-
planatory power is due to transitional dynamics and occurs when the initial conditions are
away from the steady state. They propose a prior specification, inspired by long-run the-
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oretical predictions of macroeconomic models, that addresses the problem. We highlight
that while both pathologies may cause poor out-of-sample forecasts, the excess disper-
sion problem is distinct from the overfitting problem. Thus, solving the latter does not
ensure a resolution to the former and, as a consequence, does not necessarily produce less
whimsical historical decompositions.

Finally, we contribute to rapidly growing literature on the drivers of the recent inflation
increase, see e.g. Bernanke and Blanchard (2024), Beaudry et al. (2024), Gagliardone
and Gertler (2023), Crump et al. (2024), Giannone and Primiceri (2024), Benigno and
Eggertsson (2023), Schmitt-Grohé and Uribe (2023), and Bianchi et al. (2023) among
many others. We stress the need of a robust interpretation of the historical decomposition
of inflation and provide international evidence on the recent surge phenomenon.

OUTLINE The paper proceeds as follows. Section 2 illustrates the problem and Section
3 provides formal evidence on the sources of excess dispersion in the deterministic com-
ponent. It also explains the differences between excess dispersion and overfitting. Section
4 proposes our solution. Section 5 presents estimates of the contribution of demand and
supply disturbances for the US, for the euro area and for four small open economy coun-
tries. Section 6 illustrates two alternative pragmatic solutions to the whimsical historical
decomposition problem. Finally, Section 7 concludes. The online appendix contains ad-
ditional relevant material mentioned in the text.

2 WHIMSICAL HISTORICAL SHOCK DECOMPOSITIONS

This section shows, by way of an example, that the deterministic component of an esti-
mated VAR may be subject to a large uncertainty and demonstrates the implications this
excess dispersion has for historical shock decompositions. We stress that the issue is
pervasive when VAR models are fitted to commonly used macroeconomic data. A more
formal presentation of the problem appears in the next section.

2.1 AN OUTLINE OF THE PROBLEM

Consider the reduced-form VAR model with n variables and p lags:

Yt = C + A1Yt−1 + A2Yt−2 + ...+ ApYt−p + ut (1)

where Yt is the n x 1 vector of the endogenous variables, ut ∼ N(0n,Σ) is the n × 1
vector of innovations, A1, ..., Ap are n x n coefficient matrices associated with lagged
variables, and C is the n x 1 vector of constants. The reduced-form innovations ut are
linear combinations of underlying economic shocks: ut = Fet, where F is a matrix
restricted by some structural identification scheme. We focus on the system (1), as our
problem arises in the estimation of a reduced-form model. The role played by structural
identification schemes is discussed later.

We find it convenient to rewrite the system in companion form. Define the np x 1
vectors Yt = (Y ′

t , Y
′
t−1, ..., Y

′
t−p+1)

′, ut = (u′
t, 0, ..., 0)

′, C = (C ′, 0, ..., 0)′, and the np x
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np companion matrix:

A =


A1 A2 ... ... Ap

In 0n ... ... 0n

0n In ... ... 0n

. . . ... .
0n 0n ... In 0n


With this notation the VAR is:

Yt = C+AYt−1 + ut (2)

For the purpose of an historical shock decomposition, we express the right-hand side of
(2) as the sum of a deterministic and a stochastic component, DCt and SCt:

Yt = DCt + SCt (3)

Equation (3) follows from backward substitution, with DCt and SCt defined as:

DCt =
(
I+A+ · · ·+At−1

)
C+AtY0

= (I−A)−1C+At(Y0 − (I−A)−1C) (4)
SCt = At−1u1 + · · ·+Aut−1 + ut (5)

The deterministic component DCt depends on the model parameters (A, C) and the
initial state vector Y0. It is the forecast of Yt made in period 0, i.e. the counterfactual path
of Yt absent any innovations from period 1 to period t. The second line of (4) indicates
that DCt equals the steady state of Yt plus a transitional dynamic term that depends on
how far the initial Y0 is from the steady state. The stochastic component SCt, instead,
is a discounted sum of innovations between time 1 and t. Since At is decreasing in t for
stationary and ergodic processes, shocks in the distant past play only a negligible role for
the current observation as t grows.

Conceptually, the calculation of a historical shock decomposition requires two steps:
(a) separating DCt from SCt, as in (3), and (b) disentangling the contribution of individ-
ual, structural shocks et. Our focus is on the first of these two steps. In particular, we
establish that conditional likelihood-based estimation procedures provide a very impre-
cise estimate of DCt: even small perturbations of the parametrization of (2) may result in
large changes in DCt, despite having only a minimal impact on the likelihood function.
This is problematic for researchers who want to estimate a historical shock decomposi-
tion. Because the deterministic and the stochastic components enter linearly in (3), esti-
mation uncertainty associated with DCt must imply an equivalent estimation uncertainty
associated with SCt, with the paths for the structural shocks et adjusting accordingly.

The uncertainty in DCt depends on the uncertainty in the estimates of A and C.
Because impulse responses are computed as the difference between two conditional fore-
casts, IRFt = E(Yt|u1 = 1,uk = 0, k > 1) − E(Yt|uk = 0, k > 0), the uncertainty
present in the maximum likelihood estimates of A governs the dispersion of impulse
response estimates. Thus, models associated with different draws of A but producing
similar impulse responses may induce different narratives regarding the contribution of
structural shocks to observed fluctuations whenever the uncertainty in C is significant.
This is the sense in which historical shock decompositions become whimsical.
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How pervasive is the issue? A few remarks serve to highlight the generality of the
problem. First, given that DCt is a reduced-form object, the problem occurs regardless
of whether the VAR is estimated with frequentist or flat-prior Bayesian methods. In a
Bayesian context, the problem leads to a wide posterior distribution for the determinis-
tic component. A frequentist, instead, sees it in the form of large asymptotic confidence
intervals around the deterministic component point estimate. In this paper, we take a
Bayesian approach and our preferred solution to whimsical shock decompositions is in-
herently Bayesian in nature. An alternative solution we propose in Section 6 is designed
for those who want to remain frequentist in their inferential approach. Second, whim-
sical shock decompositions occur even when AtY0 tends to zero, suggesting that data
transformations reducing the importance of the initial conditions for Yt do not remove
the problem. In fact, the problem emerges even when the VAR features ergodic, mildly
persistent variables, displaying minor low frequency variations. Third and related, to the
extent that dynamic stochastic general equilibrium (DSGE) models involve estimated pa-
rameters that enter the steady state, the issue may be relevant also for these models. After
all, a linear solution to a DSGE generally admits a time series representation consistent
with equations (2)-(5), and it is this representation that is confronted with data.

2.2 AN ILLUSTRATION – A BIVARIATE VAR

To illustrate the extent of the problem in practice, we estimate a bivariate VAR using US
data on real GDP and the GDP deflator, both measured in log first differences. This is
arguably the simplest possible setup to quantify the structural drivers of inflation. Our
baseline sample runs from 1983:Q1 to 2022:Q4; we include four lags and a constant.
Following the literature, we employ a diffuse prior (Jeffreys, 1946) on the VAR parameters
and on the covariance matrix Σ.

We use standard sign restrictions to identify the two structural shocks. As in Canova
and De Nicolò (2002), an aggregate demand shock is assumed to move GDP and infla-
tion in the same direction, while an aggregate supply shock moves the two variables in
opposite directions. These sign restrictions are imposed on impact only. Clearly, our esti-
mated demand shock may bundle together various monetary and fiscal disturbances (see
Giannone and Primiceri (2024) and Mori (2024)) and shocks related to the depletion of
excess savings accumulated during the pandemic. Similarly, the supply shock we identify
is likely a linear combination of disturbances to productivity, commodity prices, markups,
and other supply-side factors. Kabaca and Tuzcuoglu (2023) disentangle an array of dif-
ferent supply shocks in a unified framework. Since our focus is on the role played by
the deterministic component of a VAR in a historical decomposition exercise, a bivariate
model, although minimal, is sufficient.

Figure 1 reports the impulse responses from the estimated structural model. We mea-
sure time in quarters on the x-axes and the estimated responses in percentage points on
the y-axes. For each horizon, the black line represents the pointwise median response
obtained using 1000 draws. The shaded areas instead represent the 68% and the min-max
posterior credible sets (as in Baumeister and Hamilton (2015)), respectively. The point-
wise median response is compared with three alternatives. As the pointwise median most
likely mixes different draws across horizons, applied researchers often prefer to discuss
the impulse responses obtained from one particular draw instead. A popular choice is the
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Figure 1: Responses to identified aggregate demand and aggregate supply disturbances.
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Note: The black line is the pointwise median and the shaded areas cover the 68 percent and min-max
identified sets. The red line is the impulse response for the draw closest to the pointwise median; the green
and blue lines are impulse responses for the 2nd and 3rd draws closest to the pointwise median,
respectively.

single draw that is closest to the pointwise median on average over horizons, see Fry and
Pagan (2011). The impulse response obtained with this draw is reported as the red line.
We also report the impulse responses obtained from the second and third closest draws to
the pointwise median in green and in blue.

A couple of facts emerge from Figure 1. First, by construction both shocks are allowed
to have a permanent effect on the level of GDP. Second, output growth responses are short-
lived while inflation responses are more persistent. Third, the responses obtained from the
three draws are almost indistinguishable from each other and close to those produced by
the pointwise median. Thus, impulse responses are locally robust.

Panel (a) of Figure 2 plots the historical shock decomposition of inflation for the
last eight years of the sample, conditioning on each of the three draws closest to the
pointwise median impulse response. The blue bars correspond to the contribution of the
deterministic component; the red and yellow bars represent the contribution of supply and
demand disturbances, respectively. Combined, the contributions of supply and demand
disturbances sums to the stochastic component SCt. Interestingly, the three draws closest
to the pointwise median impulse response produce different narratives about the post-
pandemic inflation surge: the draw closest to the pointwise median implies that supply
shocks explain more than two-thirds of the rise in inflation post-2020. The second closest
draw, instead, implies that demand shocks account for more than two-thirds. The third
closest draw suggests that demand and supply account for about fifty percent each. These
differences are striking given that the three draws are associated with almost identical
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Figure 2: Historical decompositions and deterministic components of US inflation

(a) Historical decomposition of inflation for the 3 draws closest to the pointwise median response.
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Note: The black line in all the panels shows quarterly percentage change of the GDP deflator. Panel (a)
displays the historical shock decompositions of inflation from the 3 draws closest to the pointwise median
response for the IRFs. The colored lines in panel (b) display the deterministic components of inflation for
draws from the posterior distribution.

impulse responses. Panel (b) in Figure 2 plots the deterministic components of all draws
on the left, and of the ten draws closest to the pointwise median on the right. Interestingly,
the posterior dispersion of deterministic components is substantial even for the 10 draws
closest to the pointwise median responses, and the time paths stabilize at very different
levels. Thus, the uncertainty present in the blue bars drives the differences in the historical
contribution of inflation across draws.

2.3 HOW PERVASIVE IS THE ROLLER COASTER?

To document the generality of the problem, we show that a whimsical shock decomposi-
tion is produced in various contexts.
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Figure 3: Estimated deterministic components of inflation.

(a) Blanchard-Quah (b) Cholesky

(c) Normal-Inverse Wishart prior (d) Minnesota prior

(e) Large sample (f) Large BVAR

Note: The figure reports the deterministic components for all draws from the posterior distribution. The
black line in all the panels shows quarterly percentage change of the GDP deflator. The sample used in
panel (e) (1949-2022) is different from the others (1983-2022).

2.3.1 THE ROLE OF STRUCTURAL IDENTIFICATION ASSUMPTIONS

First, we illustrate the irrelevance of structural identification assumptions, as the uncer-
tainty in the deterministic component arises from the reduced-form estimation. Hence,
irrespective of the identification scheme employed, and frequentist or flat-prior inference,
a VAR is in principle susceptible to the problem highlighted here. We consider two of
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the most popular identification strategies: the Blanchard-Quah decomposition, which im-
poses zero restrictions on the long-run cumulative sum of VAR coefficients (Blanchard
and Quah, 1989), and the Cholesky decomposition, which imposes zero-restrictions on
the impact coefficients (Sims, 1986). The Blanchard-Quah decomposition, in particu-
lar, is commonly used to separate demand from supply shocks under the assumption that
demand shocks cannot affect the level of output in the long run.1

Because the Blanchard-Quah, Cholesky and sign-restricted decompositions share the
same draws for the reduced form parameters, the uncertainty in the deterministic compo-
nent is the same in all three schemes, see Figure 2 and the first row of Figure 3.

2.3.2 THE ROLE OF REDUCED-FORM PRIORS

Given that the dispersion we care about has to do with estimates of the VAR parameters,
one may suspect that prior restrictions routinely employed to reduce estimated parameter
uncertainty also may shrink the dispersion of the deterministic component. For illustra-
tion, we consider a standard conjugate Normal-Inverse Wishart prior and a Minnesota-like
prior (see Doan et al. (1984)).2

As the second row of Figure 3 shows, the dispersion of the deterministic components
remains large. The reason these standard priors are unable to reduce the dispersion of
the deterministic components is that they are designed to shrink the uncertainty in VAR
coefficients and in the covariance matrix of the disturbances, but they leave the prior on
the constant diffuse.

2.3.3 THE ROLE OF STRUCTURAL BREAKS

In our baseline estimation, we consider a relatively homogeneous sample period starting
in 1983. Here, we re-estimate the model over the period 1949:Q1-2022:Q4. The results
appear in the third row of Figure 3. The dispersion of the estimated deterministic com-
ponent is substantially larger than in the baseline model. Thus, the massive uncertainty
around estimates of the deterministic component is an additional argument for not using a
long and dis-homogeneous sample when estimating a SVAR model (see Furlanetto et al.
(2025) for a detailed discussion of this point).

2.3.4 THE ROLE OF THE VAR DIMENSION

Next, we examine the role played by the dimensionality of the VAR system. Canova and
Ferroni (2022) have shown that small-scale VARs may be prone to deformation prob-
1Neither the Blanchard-Quah decomposition nor the Cholesky decomposition guarantee sensible signs
of the inflation and GDP growth responses to shocks. Indeed, Figure A-1 in the Appendix shows that
Blanchard-Quah delivers positive co-movement of the two variables in response to a supply shock. Furlan-
etto et al. (2025) addresses this issue by combining Blanchard-Quah with sign restrictions.

2In the Normal-Inverse Wishart case, the prior for the autoregressive (AR) coefficients is normal, centered
at zero with a diagonal covariance matrix of 10, while the prior for the covariance matrix of the residuals is
inverse Wishart with a unitary diagonal matrix as scale and 3 degrees of freedom. The Minnesota-like prior
is also normally distributed for all AR coefficients and is centered around zero for all parameters, including
the variables’ first own lag, as VAR variables appear in growth rates. We set the hyperparameters of the
priors as in Giannone et al. (2015). The diagonal elements of the scale matrix of the inverse Wishart prior
are set to the residual variance of an AR(1) process for each variables. In both cases, we still use sign
restrictions to identify the shocks and compute historical decompositions.
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lems, making it desirable to estimate models of a certain size to ensure that structural
objects, such as impulse responses, make economic sense. Here, we estimate a 5-variable
VAR model with real GDP, the GDP deflator, real gross private domestic investment, the
Federal funds rate, and real wages. The latter is measured as average hourly earnings
of production and non-supervisory employees, deflated with the GDP deflator. All vari-
ables except the Federal funds rate are measured in log first differences. The sample is
1983:Q1-2022:Q4, as in our baseline setup.

Estimates of the deterministic components of inflation are in panel (f) of Figure 3
(see Figure E-1 for the deterministic components of each VAR variable). Evidently, the
excessive dispersion problem remains even in a larger scale VAR. If anything, it seems
exacerbated and becomes rather dramatic for variables like inflation or the Federal funds
rate.

2.3.5 THE ROLE OF PRELIMINARY DATA TRANSFORMATIONS

Our baseline result is obtained with a VAR where output and prices are in log first dif-
ferences. Given that researchers sometimes prefer to study the transmission of shocks in
VARs where the variables are measured in level (to retain cointegrating relationships), it
is worth asking whether the large dispersion of the deterministic components is a specific
feature of VARs in log first differences.

It is easy to show that if the variables are measured in log growth rate, the VAR in
level corresponding to (1) is

Yt = C + (I + A1)Yt−1 + (A2 − A1)Yt−2 + ...+ (Ap − Ap−1)Yt−p − ApYt−p−1 + ut

= C + Ã1Yt−1 + Ã2Yt−2 + ...+ ÃpYt−p − ApYt−p−1 + ut (6)

Thus, a VAR in growth rates simply has a different companion matrix than a VAR in
levels. Hence, the decomposition we have derived in (3) still holds with a different A
matrix. Thus, a dispersed C estimate implies a dispersed deterministic component and a
similarly whimsical historical decomposition.

3 A FORMAL LOOK AT EXCESS DISPERSION PROBLEM

In this section we formally analyze what drives the dispersion of the deterministic com-
ponent, A simple Monte Carlo exercise complements the analytical derivation with some
intuition. We also discuss how the deterministic component excess dispersion relates to
the overfitting problem discussed in the previous literature.

3.1 ANALYTICAL DERIVATIONS

We study the dispersion determinants in terms of mean squared error (MSE), as this for-
mulation is more natural in the Bayesian setting we employ. The details of the derivations
are in Appendix B. There we show that the mean squared error of Ĉ is:

MSE(Ĉ) = E
((

Ĉ−C
)(
Ĉ−C

)′)
= E

((
ū− (Â−A)Ȳ−1

)(
ū− (Â−A)Ȳ−1

)′)
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≈ 1

T
Σu + Bias(Â)

( 1

T
ΣY + µµ′

)
Bias(Â)′ (7)

where ū = 1
T

∑T
t=1 ut, Σu = var(ut), Ȳ−1 = 1

T

∑T
t=1Yt−1, ΣY = var(Yt) and µ =

(I−A)−1C. The bias in the conditional maximum likelihood estimate of A is:

Bias(Â) = E(Â−A)

= E
((∑T

t=1
Ỹt−1Ỹ

′
t−1

)−1(∑T

t=1
Ỹt−1ũ

′
t

))
≈ −(BA)/T (8)

where BA = Σu

(
(I−A′)−1 +A′(I−A′2)−1 +

∑
λ λ(I−λA′)−1

)
(ΣY +µµ′)−1, λ are

the eigenvalues of A Ỹt = Yt − Ȳ and ũt = ut − ū, see Kilian and Lütkepohl (2017)
for details. Generally, the direction of the bias depends on the eigenvalues of A. For
persistent processes, the bias in A tends to be negative.

Equation (7) highlights the sources of dispersion in the conditional maximum likeli-
hood estimate of the constant term, Ĉ. First, holding A and T fixed, the dispersion of Ĉ
is increasing in Σu. Second, both the bias in Â and the scaled covariance matrix T−1Σu

are larger when the sample size T is small. Thus, the dispersion of Ĉ is decreasing in
the sample size, given A and Σu. Third, the larger (in absolute value) the bias in Â is,
the larger is the dispersion of Ĉ, given Σu and the sample size T . In contrast, if this bias
vanishes, the MSE of Ĉ collapses to T−1Σu.

These observations have important implications for the dispersion in the deterministic
component and, thus, for historical shock decompositions. In Appendix B we show that:

MSE(D̂Ct) = E
((

D̂Ct −DCt

)(
D̂Ct −DCt

)′)
= Γ(A)MSE(Ĉ)Γ(A)′ + other terms

where Γ(A) = (I − At)(I − A)−1 and the other terms are defined in the appendix.
Moreover, we show that Γ(A)MSE(Ĉ)Γ(A)′ is the leading term of this expression. Thus,
given A, the dispersion of the deterministic component increases in the dispersion of the
constant term. It follows that imprecise shock decompositions tend to be a more important
concerns in VAR estimated with smaller sample sizes or where the bias in Â is larger in
absolute value.

3.2 SOME SIMULATION RESULTS

We perform a few simulation exercises to bring some intuition into the results of subsec-
tion 3.1. We generate data from a bivariate VAR(1):

Yt = C + AYt−1 + ut,

where ut ∼ N(0, I). The parameters are calibrated as follows:

C =

(
0.4
0.5

)
, and A =

(
a1,1 −0.3
0.3 0.4

)
.

We limit the attention to the first variable of the system and consider different degrees
of persistence as well as different sample sizes. The role of persistence is assessed by
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Figure 4: Estimated deterministic components of Y1,t.

(a) Diffuse prior

(b) Single-unit-root prior

Note: The figure reports the estimated deterministic components for Y1,t for 1000 draws from the posterior
distribution. The black lines represent the simulated data.

varying a1,1, the top-left element of A. We set a1,1 = 0.6 or a1,1 = 0.95.The constant term
is the same in both cases. We compare samples with T = 80, 150, and 500 observations,
respectively, and estimate the model with a diffuse prior. We measure the dispersion
of the deterministic component using 1000 draws from the posterior distribution of the
parameters.

Panel (a) of Figure 4 shows the estimated deterministic components. As expected,
the more persistent the data or the shorter the sample, the greater is the dispersion in
the estimated deterministic component. The intuition is straightforward: more persistent
processes imply larger eigenvalues λ and larger biases in the estimates of the VAR coef-
ficients. These biases, in turn, increases the dispersion of the estimated constant, making
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the deterministic component estimates more uncertain, see (7). Similarly, when the sam-
ple size is small, biases in the VAR coefficients are significant for any level of persistence.

Interestingly, even when T = 500 and the persistence is moderate, posterior dispersion
is still substantial. In fact, the dispersion is considerable even when persistence is low
(a1,1 = 0.2) and the sample is moderate (T = 150), as shown in Figure C-1 in the
appendix. Hence, while the data persistence and sample size matter, the flatness of the
likelihood function in the constant space is crucial in driving the excess dispersion result.

3.3 OVERFITTING VS. EXCESS DISPERSION

It useful to relate the well-known overfitting behavior of the deterministic component of
a VAR to the more novel excess dispersion problem studied in this paper. As discussed in
Sims (1996), Sims (2000) and Giannone et al. (2019), flat-prior VARs tend to attribute an
implausibly large share of the variations in the observed time series to their deterministic
components. The problem arises because the initial values of the variables are treated as
non-stochastic when constructing the likelihood function – and this removes a penalty for
them being away from their steady state – and because a flat prior on (A,C) implies an
informative prior for ((I−A)−1C,A), where there is little density mass for the eigenval-
ues of A in the proximity of one. To illustrate, take equation (4), which we reproduce for
the reader’s convenience:

DCt = (I−A)−1C+At(Y0 − (I−A)−1C)

Overfitting may arise in a stationary environment whenever Y0 ̸= (I−A)−1C, as this in-
duces transitional dynamics in the deterministic component that may persistently explain
the evolution in Yt. Examples of such transitional dynamics are presented in Sims (2000)
and Giannone et al. (2019), and are obtained, among others, in VARs with persistent la-
bor market variables such as hours worked and unemployment. Clearly, if A = I, unit
roots are present and DCt = Y0,∀t. On the other hand, if Y0 = (I−A)−1C, the initial
conditions are at the steady state, there is no overfitting.

To see that that excess dispersion is distinct from overfitting, consider this latter case,
Y0 = (I −A)−1C. Here no overfitting occurs. Still, if C is poorly estimated, historical
decompositions may be whimsical in the sense that the narrative provided by impulse
responses and by historical decompositions could be different. Thus, the elimination of
overfitting does not necessarily remove excess dispersion.

However, there is a sense in which the two problems are related. They both con-
cern the deterministic component of Yt and both affect long-run forecasts. In addition,
they are more pronounced in large systems, in VARs with persistent variables, and in
samples of smaller size. A further interesting connection emerges in the case when the
data-generating process is a random walk without drift. While inflation seems stationary
in our sample starting in 1983, the case of a random walk without drift is conceivable
for a less homogeneous sample (for example, a sample starting in the 1970s). In that
case, overfitting and excess dispersion jointly appear, both in finite and large samples, as
discussed in the Appendix (see Figure D-1).
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4 SOLVING THE PROBLEM

Having established how and why an estimated shock decomposition may be whimsical,
we next turn to possible solutions to the problem.

First, notice that a whimsical decomposition arises because, even though researchers
follow a Bayesian approach when presenting impulse responses, they often forget their
Bayesian point of view when it comes to the historical decompositions. Under a quadratic
(absolute) loss function, one should report the mean (median) historical decomposition
across draws, rather than the estimate obtained using a point estimate of the VAR pa-
rameters. Previous sections have shown that reporting the latter may be dangerous as the
historical decomposition narrative may become erratic, even when impulse responses are
not. Hence, one obvious solution to the problem is to perform the required integration
and report the average (median) historical decomposition. We discuss this option in sub-
section 6.2. While current computer machines can perform such an exercise in a matter of
seconds, most software packages are not setup to routinely produce it. In addition, there is
no insurance that, once the exercise is performed, IRFs and historical decompositions will
display compatible information. For this reason, we provide an alternative solution that
adds prior restrictions. These restrictions robustify historical decomposition inference by
making the deterministic component less dispersed.

We exploit the single-unit-root prior, also known as the “dummy initial observations”
prior, first introduced by Sims (1993). We show that, when such a prior is properly set, it
dramatically restricts the posterior dispersion of the estimated deterministic component.
Given that the dispersion in the stochastic component is unaffected, our prior makes the
uncertainty in the estimated historical decompositions and estimated impulse responses
comparable. In this sense, the narrative historical decompositions provide becomes ro-
bust.

4.1 PRIOR SHRINKAGE OF THE DETERMINISTIC COMPONENT

We add an artificial observation to the data, where both the current and lagged data are
given by 1

δ
Ȳ0 and the intercept is set to 1

δ
. The idea is that, if lags of Yt are at some value

Ȳ0, then also Yt will tend to be a-priori close to Ȳ0. δ is a non-negative hyperparameter
while Ȳ0 is a vector of size np x 1. The stochastic constraint imposed by our artificial
observation on the VAR can be written as

(I−A) Ȳ0 −C = δu0, (9)

where u0 = (u′
0, 0, ..., 0)

′ is a vector of size np x 1 (see Miranda-Agrippino and Ricco
(2019) for details). δ governs the tightness of the constraint. At one extreme, as δ ap-
proaches infinity. the constraint becomes uninformative At the other, as δ approaches
zero, the constraint implies either (i) a nonstationary VAR with at least one (common)
unit root and C = 0, or (ii) a stationary VAR, with C ̸= 0. If u0 is a random variable
with zero mean and unit variance, then the dummy observation restricts the estimated
unconditional mean of Yt, (I−A)−1C, to be close to Ȳ0 as δ approaches zero.

To appreciate why (9) is useful, we manipulate equation (4) and substitute out C,
using the stochastic restriction (9), to arrive at the following expression:

DCt = At(Y0 − Ȳ0 + (I−A)−1δu0) + Ȳ0 − (I−A)−1δu0 (10)
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If the system is stationary and ergodic, At(Y0 − Ȳ0 + (I − A)−1δu0) approaches zero
when the sample size grows large. Thus, asymptotically, equation (10) implies that the
deterministic component of the data a-priori fluctuates around Ȳ0, with δ regulating the
tightness of the constraint. If δ → 0, the deterministic component will approach Ȳ0,
effectively eliminating any dispersion. Notably, this happens regardless of A and Σ.
The stochastic component will still be uncertain—different draws of A and F will still
potentially affect the estimated, historical importance of different shocks. However, this
type of uncertainty is the same as the one present in the impulse responses, making the
two statistics consistent.

The choice of Ȳ0 and δ are important for the properties of DCt. When Ȳ0 is set to
the (a priori) steady state, our prior has the same flavor as the steady state prior of Villani
(2009), see Karlsson (2013). When it is set to zero, instead, it effectively demeans the
data. Other choices are possible. Ȳ0 can be set to the pre-sample mean, as in Giannone
et al. (2015), to a sample average, or to a value dictated by theory or by policy experience.
For example, in the case of inflation, a value of 2 percent, corresponding to the inflation
target, could be chosen. Thus, our specification is flexible as far as centering the prior
restriction. We treat the hyperparameter δ, which regulates the dispersion of the prior,
as a random variable and construct its posterior distribution jointly with the other VAR
parameters. The posterior mode of δ will then give us a sense of how informative the data
is about the dispersion of the deterministic component.

We would like to highlight a few important points. First, imposing an informative
prior on the VAR constant is possible but it would not necessarily solve the problem
as the steady state of the model would be a-priori centered around zero rather than Ȳ0
3 Second, while Karlsson (2013) highlights the existence of a relationship between the
single-unit-root and the steady state priors (see footnote 8, page 814), he does not use the
former to solve the excess dispersion problem. Third, Antolin-Diaz et al. (2021) argue
that the single-unit-root prior may help to address the problem of excessive explanatory
power of initial conditions. However, they do not tackle the excess dispersion problem
either, nor show how a single-unit-root prior could take care of it.

4.2 IMPLICATIONS OF THE SINGLE-UNIT-ROOT PRIOR IN

SIMULATION

In order to illustrate how the single-unit-root prior affects the dispersion of the determinis-
tic component, we repeat the simulation exercise estimating the VAR with the single-unit-
root prior. Panel (b) of Figure 4 reports the deterministic component for 1000 parameter
draws from the estimated posteriors. We set Ȳ0 equal to the sample mean and we choose
a Gamma prior density for δ with mode equal to 1 and standard deviation equal to 1,
which is quite loose, and construct the posterior distribution of the VAR parameters in
a standard hierarchial fashion (see Giannone et al. (2015)). The comparison with Panel
(a) in Figure 4 is striking: after about 20 periods, all DCt draws converge to virtually
identical values, irrespective of the data persistence or the sample size. Because they all

3Imposing a prior on the VAR constant has two additional disadvantages are the following. The prior for
the VAR coefficients and for the constant would be independent, complicating posterior sampling; these
is no insurance that the prior on endogenous objects, such as the steady states, is meaningful, see e.g.,
Del Negro and Schorfheide (2011).
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Figure 5: The role played by the hyperparameter δ

(a) Estimated DCt of Y1,t with δ = 0.2 (b) Estimated DCt of Y1,t with δ = 0.0001

(c) Marginal likelihood
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Note: Panels (a) and (b) report the estimated deterministic components for Y1,t for all draws from the
posterior distribution, for different levels of δ. The black lines are the actual values. Panel (c) displays the
log marginal likelihood for different values of δ when Ȳ0 is equal to the sample mean (blue line) and when
it deviates from the sample mean by 5% (red line). Panel (d) shows the dispersion of the estimated
deterministic components at the end of the sample for different values of δ and different values of Ȳ0.

converge to Ȳ0, the uncertainty in the shock decomposition becomes consistent with the
uncertainty in impulse responses. The key behind this result is the discipline imposed by
δ, whose mode is estimated to be 0.0001.

Panels (a) and (b) in Figure 5 shed further light on the role played by δ. These panels
plot the deterministic components when we redo the simulation exercise in subsection 3.2,
but fix δ at δ = 0.2 and δ = 0.0001 respectively. Recall that the former value corresponds
to the “rule-of-thumb” used in the literature (see, for example, Sims and Zha (1998)),
while the latter is what we obtain as modal value. Note that such a low value of δ implies
that the stochastic restriction (I−A) Ȳ0 = C holds almost exactly. In Figure 5 we limit
our attention to the case a1,1 = 0.95 and T = 150 observations.

The differences between Panels (a) and (b) illustrate the crucial role played by δ:
with δ = 0.2 considerable dispersion in the deterministic component remains, with the
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long-run values settling at vastly different estimates. This may suggest that the “rule-of-
thumb” value of 0.2 can be problematic for researchers interested in shock decomposi-
tions. δ = 0.0001, instead, forces all 1,000 posterior draws to share the same determinis-
tic component after relatively few periods. As we will see, a low δ is consistent with the
modal estimate obtained using data for many countries.

Why is a very small value of δ preferred by data? Given that small values of δ im-
ply less dispersion in the deterministic component, they may also deliver more precise
forecasts. Panel (c) in Figure 5 reports the implied marginal likelihood as a function of
δ. We consider two cases: when Ȳ0 is equal to the mean (I−A)−1C (blue line), and
when the deviation between the two is 5% (red line). In the first case, we note that the
marginal likelihood is strictly decreasing in δ, consistent with greater precision in the one-
step ahead forecasts of the model. In the second case the marginal likelihood is not strictly
decreasing in δ. Still, even with a 5% deviation in the initial observation we obtain a much
higher marginal likelihood for δ close to zero than, say, for δ = 0.2. Thus, to optimally
forecast one-step-ahead, it is preferable to considerably reduce the uncertainty around the
deterministic component, and we achieve this when δ is close to zero.

Finally, Panel (d) in Figure 5 vizualises the trade-off one may face when jointly setting
Ȳ0 and δ. The figure reports the posterior, end-of-sample, dispersion in the deterministic
component for different combinations of Ȳ0 and δ. The end-of-sample dispersion is ex-
pressed as the standard deviation of the deterministic component, relative to the standard
deviation of the variable. Three observations emerge. First, the choice of Ȳ0 does not mat-
ter. Thus, issues of in-sample vs. out-of-sample predictability do not arise. Second, the
value used by Antolin-Diaz et al. (2021) (δ = 0.05), which the authors consider useful to
reduce overfitting in their data, is insufficient to eliminate the excess dispersion problem.
Third, it is only for small values of δ that impulse responses and historical decompositions
uncertainty is comparable.

Since free lunches are rare in practice, one may wonder if there costs when using our
prior. While our specification solves the excess dispersion problem, it could in principle
have important side effects and, e.g., significantly alter the mean forecasts or the dynam-
ics in response to shocks. Table C-1 in the online appendix shows that the forecasting
performance, as measured by the root mean squared error, of a VAR with or without
the single-unit-root prior is similar at different horizons. Thus our prior, while reducing
out-of-sample uncertainty, does not affect the mean of the forecasts. On the other hand,
Figure C-2 and Figure C-3 in the online appendix show that both the posterior distribu-
tion of the AR coefficients and the impulse responses are unaffected by our prior. Thus,
our prior restriction makes the information contained in impulse responses and historical
decompositions consistent without imposing significant distortions in other statistics.

5 THE DRIVERS OF THE POST-PANDEMIC INFLATION

This section studies the drivers of the recent inflation surge in a number of countries, tak-
ing into account the dispersion in the deterministic components. We estimate a bivariate
SVAR with real GDP and GDP deflator, both in log first differences, restricted with the
single-unit-root prior, for the US, the euro area, and four other small open economies.
We employ the same identifying sign restrictions used in section 2.2 to recover demand
and supply shocks. We choose a Gamma prior density for δ with mode equal to 1 and
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standard deviation equal to 1, and construct the posterior distribution for the parameters
in a standard hierarchial fashion. In all cases, Ȳ0 is set to the sample mean.

5.1 US INFLATION

Figure 6: US estimates using the single-unit-root prior.

(a) Historical decomposition of inflation for top 3 draws

2014 2016 2018 2020 2022
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2014 2016 2018 2020 2022
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2014 2016 2018 2020 2022
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Deterministic component Supply Demand

(b) Deterministic components of inflation
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Note: The black line in all the panels shows quarterly percentage change of the GDP deflator. Panel (a)
displays the historical shock decompositions of inflation from the 3 draws closest to the pointwise median
response for the IRFs. The colored lines in panel (b) display the deterministic components of inflation for
draws from the posterior distribution.

Figure 6 documents the US results, using the 1983:Q1-2022:Q4 sample. Panel (a) re-
ports selected historical shock decompositions for inflation while the deterministic com-
ponents are plotted in panel (b).

The modal value of δ returned by the algorithm of Giannone et al. (2015) is very low
(0.0001), and its posterior dispersion is tiny (see Figure A-2 in the online appendix). Put
it differently, although the prior is centered around a high value of δ, US data favors a
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specification where a-posteriori virtually all VAR models share the same unconditional
mean value, as shown in panel b) of Figure 6. This highlights the marginal likelihood
gains when δ is low, as discussed earlier.

With the modal value we obtain, model draws featuring similar impulse responses,
now also imply similar historical shock decompositions. As an example, the three draws
closest to the pointwise median impulse response now produce a coherent narrative about
post-COVID inflation drivers. As shown in panel a) of Figure 6, supply factors were
important in the initial phase of the inflation surge, but demand factors became the main
drivers since 2021. They account for 56 percent of the inflation surge in 2021 and 77
percent in 2022. On average over the post-pandemic period, demand factors explain over
50 percent of the movements in inflation.

We have estimated numerous specifications to check the robustness of these results.
Here we briefly discuss what we obtain in two such exercises. First, given the COVID
outliers, we stopped estimation in 2019 and computed historical decompositions for the
2021-2022 period with the estimates we obtained. Without our prior, the deterministic
components are very dispersed and the historical decomposition of inflation whimsical
(see Figure A-3 in the appendix). The problem disappears when the single-unit-root re-
striction is imposed and the result agree with our full sample estimates. Thus, the extreme
volatility of output growth due to COVID is not crucial for our conclusions. Second, we
have estimated a five variable VAR as in section 2.3.4, and identified three demand shocks
(residual demand, monetary, and investment), and two supply shocks (labor supply and
productivity). With our prior in place, we calculated the combine share of fluctuations
due to the three demand shocks in 2021 and 2022. We found that while in the first two
quarters of 2021 supply shocks are important, demand shocks dominate afterward, see ??
in the appendix for more details. In particular, in line with conclusions of the two variable
VAR, the three demand shocks explain over 60 percent of the variability of inflation from
the middle of 2021 to the end of 2022.

A final word of caution is in order. While the single-unit-root prior eliminates a large
portion of the uncertainty around the deterministic component, uncertainty about the point
estimates of historical decompositions remains (see Read (2024)). However, this uncer-
tainty is aligned with the one of impulse responses. Once the uncertainty around the deter-
ministic component is reduced, a researcher who wants to reduce the residual uncertainty
around historical decompositions should use the same methods employed to reduce un-
certainty around impulse responses (see Antolı́n-Dı́az and Rubio-Ramı́rez (2018), Arias
et al. (2019), Baumeister and Hamilton (2015), and Kilian and Murphy (2012) among
others).

5.2 DISCUSSION

Our results are consistent with recent papers supporting the prevalent, if not dominant,
role of demand shocks for the recent US inflation surge. This is the case when New Key-
nesian models with Phillips curve nonlinearities (Benigno and Eggertsson (2023), Hard-
ing et al. (2023) and Schmitt-Grohé and Uribe (2023)) and multiple industries models
(Rubbo, 2023) are used. It is also the case when factor models (Eickmeier and Hofmann,
2022) and SVAR models similar to ours (Giannone and Primiceri, 2024) are estimated.

A few papers have tried to disentangle more granular drivers within the broad category
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of demand shocks. The spending of excess savings accumulated during the pandemic is
found to play a major role in Bardóczy et al. (2024) using a HANK model. Accommoda-
tive monetary policy is a major force in Giannone and Primiceri (2024), Gagliardone and
Gertler (2023), Bocola et al. (2024), and Comin et al. (2023). A number of papers have
also emphasized the role of fiscal policy in the experience. Bianchi et al. (2023) show that
unfunded fiscal shocks caused a persistent inflation increase, Di Giovanni et al. (2023a)
discover an important impact of fiscal policy on current inflation using a multi-sector
model with a network structure, while Mori (2024) finds a major role for fiscal policy in
driving the inflation surge in a SVAR model that disentangle the three demand shocks just
reviewed.

The prevalent role of shocks to prices given wages highlighted by Bernanke and Blan-
chard (2024) is not necessarily in contrast with our outcomes. As an example, high oil
prices (the most important shock to prices considered by Bernanke and Blanchard (2024))
can reflect supply disruptions but also the strong recovery in world demand. Likewise,
fluctuations in labor market tightness, which are of second order in Bernanke and Blan-
chard (2024), but of crucial in Ball et al. (2022), Benigno and Eggertsson (2023) and
Ascari et al. (2024b), are not necessarily driven only by demand factors.

While a consensus seems to emerge on the prevalence of demand shocks, it is im-
portant to stress that some papers find a more balanced split between demand and supply
forces. Gagliardone and Gertler (2023) highlight the role of oil shocks (in combination
with loose monetary policy) 4 Shapiro (2024) constructs sectoral-based decompositions
and finds a slightly prevalent role for supply forces. This is the case also in the Phillips
curve analysis of Crump et al. (2024). A strong support for supply chain disruptions is
found in Bai et al. (2024). Finally, Beaudry et al. (2024) document the amplification of
broad-based supply shocks in presence of deviations from rational expectations.

5.3 INFLATION IN OTHER COUNTRIES

Although the recent inflation surge is a global phenomenon, it is far from obvious that the
role of demand and supply factors across countries should be similar 5 . For example, the
fiscal stimulus during the COVID pandemic has been particularly pronounced in the US.
In addition, European countries have been more exposed to the economic consequences
of the Russian invasion of Ukraine. It is, therefore, of independent interest to estimate a
SVAR model using data from other countries and we start with the euro area.

Because the sample for the euro area is shorter, we use data on industrial production
(rather than on GDP) and HICP inflation at a monthly frequency in the exercise. The
sample period goes from 2001:M1 to 2023:M3. As with US data, the model estimated
with a diffuse prior features a large dispersion of deterministic components (see Appendix
F). If anything, the problem is exacerbated. Yet, when the model is estimated with the
single-unit-root prior, the uncertainty around the deterministic component is substantially
reduced, as shown in Figure 7. Notably, the modal value of δ is as low as with US data.

4Giannone and Primiceri (2024) make the point that supply shocks cannot produce much inflation if the
monetary policy authority is a strict inflation targeter. For inflation to climb, monetary policy must provide
an unusually high degree of accommodation relative to the historical rule.

5The separate role of domestic and international shocks is studied in Aastveit et al. (2024), Di Giovanni
et al. (2023b), Forbes et al. (2024) and Friis et al. (2025). In general, a relevant role for domestic demand
forces emerges also once controlling for international factors.
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Figure 7: Euro area estimates using the single-unit-root prior.

(a) Historical decomposition of inflation for top 3 draws
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Note: The black line in all the panels shows year-on-year HICP inflation in the euro area. Panel (a)
displays the historical shock decompositions of inflation from the 3 draws closest to the pointwise median
response for the IRFs. The colored lines in panel (b) display the deterministic components of inflation for
draws from the posterior distribution.

Demand and supply factors now contributed more or less equally to the recent inflation
surge, with a more prevalent role for demand factors in 2022. Thus, while supply factors
played a role only until mid 2022 in the US, they explain a substantial share of inflation
in the euro area also in the latest part of the sample. This outcome is far from surprising,
as the US are largely insulated from the consequences of the Ukraine war. Nonetheless,
demand factors are prevalent also in the euro area, at least since the second quarter of
2022. This agrees with the results of Ascari et al. (2023). More recently, Giannone
and Primiceri (2024) confirm our finding and highlight the role of monetary policy while
Ascari et al. (2024a) show that fiscal policy also contributed to the surge. On the other
hand, Bańbura et al. (2023) and De Santis (2024) find a prevalent role for supply shocks
in empirical specifications that allow for two or more supply shocks.

To provide complementary evidence, we also estimate the same SVAR model using
data for four small open economies: Norway, Sweden, Canada and Australia. In this case,
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we use quarterly data on real GDP growth and year-on-year CPI inflation for the period
1993:Q1–2023:Q2. The single unit-root-prior shrinks the uncertainty around the deter-
ministic component for all countries, as illustrated in Figure 8b and in all cases the modal
value of δ is low. As shown in Figure 8a, the role of demand factors is everywhere preva-
lent, if not dominant. Thus, despite the large heterogeneity in the policy responses to the
COVID 19 pandemic, the different exposure to supply bottlenecks and to the Ukraine war,
demand factors seem to drive the recent inflation surge in all the countries we considered.

A broader international comparison is performed in Barro and Bianchi (2024). They
use data for OECD countries (20 nations plus the euro area) and conclude that the fiscal
expansion following the COVID pandemic has been a key driver of inflation rates. Our
result that demand shocks are prevalent in all countries is very much consistent with their
findings although the sample, the estimation procedure, and the approach employed in the
empirical analysis are very different.

6 SOLVING EXCESS DISPERSION: ALTERNATIVE

APPROACHES

For those researchers who are reluctant to use the single-unit-root prior for inferential
purposes, we offer two alternative pragmatic solutions that can go a long way in making
the dispersion in deterministic components less relevant for practical purposes. The first
is to demean the data prior to estimation. Such an approach partially works since poor
estimates of the VAR constant contribute to make historical decompositions whimsical.
The second is to construct a median historical decomposition taking parameter uncertainty
into account.

6.1 DEMEANING THE DATA

As discussed in Section 2, the deterministic component consists of two terms:

(I+A+A2 + · · ·+At−1)C+AtY0

If the VAR constant is zero, the first term disappears and, as t increases, the last term
goes towards zero, as long as the data is stationary and ergodic. Thus, a simple way
to restrict the historical decomposition across draws to be consistent with the impulse
responses is to demean the data and estimate the VAR without a constant. This approach
is equivalent to our single-unit-root prior setup when δ → 0 and Ȳ0 = 0.

We present the historical decomposition of US inflation with demeaned data in Fig-
ure 9. In this specification, the role of demand shocks is still evident and slightly more
prevalent than with a single-unit-root prior. Note, however, that the uncertainty in the de-
terministic component is larger than in Figure 6. By demeaning and estimating the VAR
without a constant, the deterministic component is forced to be on the path described by
AtY0. Therefore, draws that imply different A’s will force the estimated structural shocks
to take different paths, potentially altering the narrative in a given historical episode.
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Figure 8: Selected countries estimates using the single-unit-root prior.

(a) Historical decompositions of inflation
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(b) Deterministic components of inflation. Top 10 draws.
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Note: The black line in all the panels shows year-on-year CPI inflation. Panel (a) displays the historical
shock decompositions of inflation from the draw closest to the pointwise median response for the IRFs.
The colored lines in panel (b) display the estimated deterministic components of inflation from the ten
draws closest to the pointwise median response based on the IRFs.
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Figure 9: US estimates without constant (demeaned data) and a diffuse prior.

(a) Historical decomposition of inflation for top 3 draws

Closest

2014 2016 2018 2020 2022
-2

-1

0

1

2

N
o 

co
ns

ta
nt

2nd closest

2014 2016 2018 2020 2022
-2

-1

0

1

2

3rd closest

2014 2016 2018 2020 2022
-2

-1

0

1

2

Deterministic component Supply Demand

(b) Deterministic components of inflation
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Note: The black line in all the panels shows the de-meaned quarterly growth rate of the GDP deflator.
Panel (a) displays the historical shock decompositions of inflation from the 3 draws closest to the
pointwise median response for the IRFs. The colored lines in panel (b) display the deterministic
components of inflation for draws from the posterior distribution.

6.2 COMPUTING A MEDIAN HISTORICAL DECOMPOSITION

Another pragmatic approach consists in acknowledging that the estimated deterministic
components are uncertain and take the information into account when reporting historical
decompositions. To do this, one could compute a large number of historical decompo-
sitions, each associated with a draw for the VAR parameters and, depending on the loss
function employed, construct either the pointwise mean or the pointwise median historical
decomposition at each time. Here we prefer the second, even though it does not preserve
additivity, since certain draws of the parameters imply explosive systems or very erratic
historical decomposition, especially when a flat prior is used. Hence, at each quarter, the
data is decomposed into the median contribution of demand shocks, the median contribu-
tion of supply shocks and a residual component that absorbs the difference between data
and the two median stochastic components, see also Bergholt et al. (2025).

Figure 10 presents the median historical decomposition for the four prior distributions
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we considered using US data. Three facts are evident. First, the results are quite similar
across specifications. Second, demand shocks have an important role during the current
inflation surge in all cases. Third, by comparing the bottom-right panel of Figure 10 and
panel a) in Figure 6 one can conclude that the pointwise median historical decomposition
and the historical decomposition obtained with the single-unit-root prior provide a similar
reading of the current inflation experience.

Figure 10: Historical decomposition of inflation, pointwise median.

(a) Diffuse prior
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(b) Normal-Inverse Wishart prior
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(c) Minnesota prior
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(d) Single-unit-root prior
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Note: This figure displays the pointwise median historical shock decompositions of inflation for different
priors together with the quarterly growth rate of the GDP deflator (black line).

7 CONCLUSION

The paper shows that the uncertainty around the deterministic component in SVAR mod-
els is generally large in standard specifications. This means that draws producing similar
impulse responses amy feature vastly different deterministic components. In turn, draws
associated with extreme deterministic components exhibit a distorted historical decompo-
sition because shocks have to match the gap between the variable of interest and a (highly
uncertain) estimated deterministic component. Hence, there is no guarantee that ”good”
impulse response functions are associated with ”good” historical decompositions.

We provided a solution to the problem based on the use of the single-unit-root prior.
We also suggest two pragmatic alternatives: demeaning the data and using a pointwise
median historical decomposition. Regardless of the approach one uses, we find that the
recent US inflation surge is mainly driven by demand factors. The prevalence of demand
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shocks is confirmed, and in some cases reinforced, when using data for Norway, Sweden,
Canada and Australia. The contribution is generally more balanced in the euro area where
supply factors are still relatively important at the end of our sample.

The problems we highlight also appear when one wants to separate permanent from
transitory components. The excess dispersion problem becomes even more acute because
variations in the deterministic components matter for the level of the permanent compo-
nent. Thus, a large uncertainty in the former translates into a large uncertainty in the latter.
In addition, since in small samples, the long run contribution of the shocks is imprecisely
estimated, additional uncertainty may affect what is perceived as permanent and as tran-
sitory. This makes estimates of, e.g., trend inflation generally poor and inflation regimes
hard to characterize. These issues are currently investigated in Canova and Fosso (2024).
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ONLINE APPENDIX

A ADDITIONAL RESULTS FOR THE US

Figure A-1: IRFs, different identification schemes
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(b) Cholesky
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Note: The black line is the pointwise median and the shaded areas cover the 68 percent and min-max
identified sets. The red line is the impulse response for the draw closest to the pointwise median; the green
and blue lines are impulse responses for the 2nd and 3rd draws closest to the pointwise median,
respectively.
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Figure A-2: Posterior distribution of δ, US data
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Figure A-3: Estimated deterministic components, diffuse prior, 1983-2019

Note: The figure reports the deterministic components for all draws from the posterior distribution.

34



B ANALYTICAL DERIVATIONS

This appendix provides the details of the analytical derivations of the quantities presented
in Section 3.1. First, we derive an expression for the mean squared error of the constant
term C. Using the VAR model, the mean squared error of Ĉ is:

MSE(Ĉ) = E
((

Ĉ−C
)(
Ĉ−C

)′)
= E

((
ū− (Â−A)Ȳ−1

)(
ū− (Â−A)Ȳ−1

)′)
= E

(
ūū′ − ūȲ′

−1(Â−A)′ − (Â−A)Ȳ−1ū
′ + (Â−A)Ȳ−1Ȳ

′
−1(Â−A)′

)
= E

(
ūū′)− E

(
ūȲ′

−1(Â−A)′
)
− E

(
(Â−A)Ȳ−1ū

′)
+ E

(
(Â−A)Ȳ−1Ȳ

′
−1(Â−A)′

)
(B-1)

Since A can be defined, with data in deviation from the sample mean, as Â = A +(∑T
t=1Ỹt−1Ỹ

′
t−1

)−1(∑T
t=1Ỹt−1ũ

′
t

)
we can write the mean squared error of Ĉ as:

MSE(Ĉ) = E
(
ūū′)− E

(
ūȲ′

−1

)
Bias(Â)′ − Bias(Â)E

(
Ȳ−1ū

′)+ Bias(Â)E
(
Ȳ−1Ȳ

′
−1

)
Bias(Â)′

≈ 1

T
Σu + Bias(Â)E

(
Ȳ−1Ȳ

′
−1

)
Bias(Â)′

≈ 1

T
Σu + Bias(Â)

( 1

T
ΣY + µµ′

)
Bias(Â)′ (B-2)

where ū = 1
T

∑T
t=1 ut, Ỹt = Yt − Ȳ, Ȳ = 1

T

∑T
t=1Yt, µ = (I − A)−1C, Σy =

var(Yt−1). The approximation comes from the fact that the terms E
(
ūȲ′

−1

)
Bias(Â)′ and

Bias(Â)E
(
Ȳ−1ū

′) disappear in standard samples as these contain the term 1
T 3 .

Recall the definition of the deterministic component:

DCt =
(
I+A+ · · ·+At−1

)
C+AtY0

= (I−A)−1C+At(Y0 − (I−A)−1C) (B-3)

The mean squared error of the estimated deterministic component is:

MSE(D̂Ct) = E
((

D̂Ct −DCt

)(
D̂Ct −DCt

)′) (B-4)

Focusing on the term D̂Ct −DCt:

D̂Ct −DCt = (I− Â)−1Ĉ+ Ât(Y0 − (I− Â)−1Ĉ)− (I−A)−1C+At(Y0 − (I−A)−1C)

= Γ(A)(Ĉ−C) + (Γ(Â)− Γ(A))Ĉ+ (Ât −At)Y0 (B-5)

where Γ(A) = (I−At)(I−A)−1. Substituting (B-5) into (B-4), we obtain:

MSE(D̂Ct) = E
((

D̂Ct −DCt

)(
D̂Ct −DCt

)′)
= E

((
Γ(A)(Ĉ−C)(Ĉ−C)′Γ(A)′ + Γ(A)(Ĉ−C)Ĉ′(Γ(Â)− Γ(A))′
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+ Γ(A)(Ĉ−C)Y′
0(Â

t −At)′ + (Γ(Â)− Γ(A))Ĉ(Ĉ−C)′Γ(A)′

+ (Γ(Â)− Γ(A))ĈĈ′(Γ(Â)− Γ(A))′ + (Γ(Â)− Γ(A))ĈY′
0(Â

t −At)′

+ (Ât −At)Y0(Ĉ−C)′Γ(A)′ + (Ât −At)Y0Ĉ
′(Γ(Â)− Γ(A))′

+ (Ât −At)Y0Y
′
0(Â

t −At)′
)

= E
((

Γ(A)(Ĉ−C)(Ĉ−C)′Γ(A)′
))

+ other terms (B-6)

= Γ(A)MSE(Ĉ)Γ(A)′ + other terms (B-7)

Here we focus on the term related to Ĉ. As long as the process is stationary and ergodic,
and for the length of a standard samples, Ât − At converges to zero and the equation
above reduces to:

MSE(D̂Ct) = E
((

D̂Ct −DCt

)(
D̂Ct −DCt

)′)
≈ E

((
Γ(A)(Ĉ−C)(Ĉ−C)′Γ(A)′ + Γ(A)(Ĉ−C)Ĉ′(Γ(Â)− Γ(A))′

+ (Γ(Â)− Γ(A))Ĉ(Ĉ−C)′Γ(A)′ + (Γ(Â)− Γ(A))ĈĈ′(Γ(Â)− Γ(A))′
)

(B-8)

Notice that the terms Γ(A)(Ĉ−C)Ĉ′(Γ(Â)−Γ(A))′ and (Γ(Â)−Γ(A))Ĉ(Ĉ−C)′Γ(A)′

are negative semi-definite if the bias in Â is different from zero, thus reducing the mean
squared error of the deterministic component MSE(D̂Ct). This is because the bias in Ĉ
is of opposite sign with respect to the bias in Â:

Bias(Ĉ) = E(Ĉ−C) = E(ū− (Â−A)Ȳ−1) = −Bias(Â)µ (B-9)

In general, Γ(A)(Ĉ−C)Ĉ′(Γ(Â)−Γ(A))′+(Γ(Â)−Γ(A))Ĉ(Ĉ−C)′Γ(A)′+(Γ(Â)−
Γ(A))ĈĈ′(Γ(Â) − Γ(A))′ is negative semi-definite. The relevant term for explaining
excess dispersion thus is the first term, the mean squared error of Ĉ. The dispersion
unambiguosly increases if the dispersion in the estimate of the constant term increases.
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C ADDITIONAL SIMULATION RESULTS

Figure C-1: Deterministic components in simulated data: a1,1 = 0.2, T = 150.

Note: The figure reports the estimated deterministic components for Y1,t for all draws from the posterior
distribution. The black line represents the simulated data.
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Figure C-2: Posterior distributions of impulse responses, Minnesota and Minnesota and
SUR priors, simulated data.
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Table C-1: RMSE, Minnesota and Minnesota-SUR priors, simulated data.

h Minnesota prior Minnesota and SUR priors
Variable 1 Variable 2 Variable 1 Variable 2

1 0.62 0.59 0.61 0.58
4 1.20 0.67 1.20 0.68
8 1.48 0.78 1.47 0.78

20 1.46 0.79 1.46 0.80

Note: Results are reported for the simulation exercise. Out-of-sample performance is calculated using 100
additional observations. Variable 1 is the more persistent (AR1=0.95) and variable 2 is the less persistent
(AR1=0.6).
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Figure C-3: Posterior distributions, Flat and SUR priors, simulated data.
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D ANOTHER LOOK AT DISPERSION VS. OVERFITTING IN

SIMULATIONS

Figure D-1: Estimated deterministic component of Y1,t, different DGP.

(a) T = 150 stationary

(b) T = 150 unit root

(c) T = 10000 unit root

Note: The figure reports the estimated deterministic components for Y1,t for all draws from the posterior
distribution. The black line represents the simulated data.

Figure D-1 provides evidence that shed further light on the relationship between disper-
sion in the deterministic component and overfitting. We consider three cases. In each case
we decompose the deterministic component DCt (left column) into the steady state term
(I−A)−1C (middle column) and the transitional dynamic term At(Y0 − (I−A)−1C)
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(right column). In the top row we consider the simulation exercise analyzed in the text
with stationary data. Two observations stand out: almost all of the dispersion in the deter-
ministic component arises from the steady state term; and the dispersion in the dynamic
term is essentially zero after 20 observations. Second, there is no overfitting in this case ,
as the dynamics in the deterministic component by construction are transitory, and limited
to the very beginning of the sample. Thus, the first row in Figure D-1 illustrates how the
deterministic component could be excessively dispersed when overfitting is absent.

The second row illustrates a situation in which the true data generating process (DGP)
is non-stationary (a random walk without drift). This is the case considered in the Ap-
pendix of Giannone et al. (2019). The problem of excess dispersion remains, as can be
seen in the middle column. Moreover, the initial difference between Y0 and (I−A)−1C
now also produces transitional dynamics throughout the sample, as some estimated
eigenvalues of A are close to unity, see third column. Thus, in this setup, both excess
dispersion and overfitting may be quantitatively important problems.

The final row in Figure D-1 still considers a random walk without drift but a sample of
10,000 observations is used to estimate the VAR. In this situation small sample issues are
absent. Yet, even in this case we observe both excess dispersion, as well as long-lasting
transitional dynamics when there are differences between the initial observation and the
unconditional mean. Thus, for this data generating process,neither excess dispersion nor
overfitting vanish when the sample size becomes very large. Giannone et al. (2019) proved
this result for overfitting. Here, we show, via simulation, that it applies also to excess
dispersion.
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E A LARGER SCALE SVAR

Figure E-1: Deterministic components, diffuse prior, larger VAR

Note: The figure reports the estimated deterministic components for all draws from the posterior
distribution for each data series. The black line represent the data series.

In this Appendix we present results for a VAR system with five variables. Under flat
priors, the excess dispersion problem is exacerbated, in particular for inflation and interest
rates, as shown in Figure E-1.

We then estimate the SVAR with the single-unit-root prior on the same variables. The
identification scheme is presented in Table E-1. We identify three demand shocks and two
supply shocks. The monetary shock is the only demand shock generating inverse impact
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comovement between interest rates and inflation. The investment shock moves invest-
ment more than the other components of aggregate demand. The residual demand shock
commingles government spending shocks, discount factor shocks and foreign shocks. On
the supply side, a restriction on wages separates labor supply shocks from productivity
shocks. This scheme is rather standard in the literature.

We present the historical decompositions based on the pointwise median and point-
wise mean in Figure E-2 and E-3 respectively. The three demand shocks combined ex-
plain the bulk of the inflation surge in both cases. In agreement with Giannone and Prim-
iceri (2024), Comin et al. (2023) and Gagliardone and Gertler (2023), monetary shocks
play a large role: through the lenses of the VAR model, the response of policy to the
inflation surge has been more muted than what it is implied by the historical rule.

Table E-1: Sign restrictions imposed on the larger SVAR

Other demand Investmant Monetary policy Labor supply Other supply
GDP + + + + +
Inflation + + + - -
Investment + + +
Interest rate + + -
Real wage - +
Investment/GDP - +

Figure E-2: Median Historical decomposition of inflation, single-unit-root prior, Larger
SVAR
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Note: The point-wise median contributions from the shocks and the deterministic component do not
necessarily sum up to the level of inflation. The blue bars are the difference between inflation and the sum
of the median contributions from the structural shocks.
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Figure E-3: Mean Historical decomposition of inflation, single-unit-root prior, Larger
SVAR
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F ADDITIONAL FIGURES FOR THE EURO AREA

Figure F-1: IRFs to identified shocks in the euro area
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Note: The black line is the pointwise median and the shaded areas the min-max identified set. The red line
is the IRF for the draw that is closest to the pointwise median; the green and blue lines are IRFS for 2nd
and 3rd draws closest to the pointwise median, respectively.
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Figure F-2: Historical decompositions and deterministic components of euro area infla-
tion, diffuse prior

(a) Historical decomposition of inflation for the 3 draws closest to the pointwise median IRFs
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(b) Deterministic components of inflation
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Note: The black line in all the panels shows HICP inflation. Panel (a) displays the historical shock
decompositions of inflation from the 3 draws closest to the pointwise median response for the IRFs. The
colored lines in panel (b) display the deterministic components of inflation for draws from the posterior
distribution.
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